TIME DELAY LENS MODELING CHALLENGE FOR THE HUBBLE CONSTANT ESTIMATION

Tak Tak

University of Notre Dame

11 Dec 2018

Joint work with Simon Birrer (UCLA) and thank to Kaisey Mandel (Harvard-Smithsonian CfA & Cambridge University).

INTRODUCTION

Video Credit: Science, American Association for the Advancement of Science

The Hubble constant H_0 represents the current expansion rate of the Universe, as well as the age $(= H_0^{-1})$, size, and density of the Universe.

INTRODUCTION (CONT.)

But there have been several different estimates of H_0 from various methods.

Image Credit: Science, American Association for the Advancement of Science

The most recent estimates from these two methods are

- CMB (Plank collaboration, 2016): 67.8 ± 0.9 km s⁻¹Mpc⁻¹.
- CDL (Reiss et al., 2016): $74.3 \pm 2.1 \text{ km s}^{-1} \text{Mpc}^{-1}$.

Is this difference true (new physics) or not (within statistical uncertainty)? Improving statistical accuracy or double-checking by independent methods.

TIME DELAY COSMOGRAPHY

Quasar is a highly luminous galaxy hosting a supermassive black hole at the center. Since it is extremely bright, it can be seen at a great distance.

Video Credit: Space.com

TIME DELAY COSMOGRAPHY (CONT.)

Video source: https://www.youtube.com/watch?v=iE8x9kDHCFo

Strong gravitational lensing: The strong gravitational field of the intervening galaxy bends the light rays towards the Earth (like a lens), and thus we see multiple images of the same quasar in the sky.

TIME DELAY COSMOGRAPHY (CONT.)

Credit: NASA's Goddard Space Flight Center

Time delay: Light rays take different routes and travel through different gravitational potential, and thus their arrival times can differ \rightarrow time delay!

TIME DELAY COSMOGRAPHY (CONT.)

Inference on H_o via an equation for additional travel distance (Refsdal, 1964).

Image Credit: Tommaso Treu (UCLA) in "Dark Matter and Strong Lensing (2014)"

Speed of light $(c) \times \text{Time delay} (\Delta t_{ij})$ = Time delay distance $(D_{\Delta t}(H_o, z, \Omega)) \times \text{Fermat potential difference} (\Delta \phi_{ij})$

CLOSED-FORM MARGINAL POSTERIOR OF H_o

Since $\Delta \phi_{ij} = \frac{c\Delta t_{ij}}{D_{\Delta t}(H_o, z, \Omega)}$, Marshall+ (2016) suggest (with fixed z and Ω) $\Delta \hat{\phi}_{ij} \mid \Delta t_{ij}, H_o \sim N \left[\frac{c\Delta t_{ij}}{D_{\Delta t}(H_o)}, \sigma^2_{\Delta \hat{\phi}_{ij}} \right],$ $\Delta t_{ij} \sim N(\Delta \hat{t}_{ij}, \sigma^2_{\Delta \hat{t}_{ij}}).$ Marginally, $\Delta \hat{\phi}_{ij} \mid H_o \sim N \left[\frac{c\Delta \hat{t}_{ij}}{D_{\Delta t}(H_o)}, \frac{c^2}{D^2_{\Delta t}(H_o)} \sigma^2_{\Delta \hat{t}_{ij}} + \sigma^2_{\Delta \hat{\phi}_{ij}} \right].$

All but H_o (~ Unif[50, 90] a priori) are known or (at least) estimable!

- $\Delta \hat{\phi}_{ij}$: Fermat potential difference estimate between images i & j.
- $\sigma^2_{\Delta \hat{\phi}_{ij}}$: An uncertainty estimate (variance) of $\Delta \hat{\phi}_{ij}$.
- $\Delta \hat{t}_{ij}$: A time delay estimate between images *i* and image *j*.
- $\sigma^2_{\Delta \hat{t}_{ij}}$: An uncertainty estimate (variance) of $\Delta \hat{t}_{ij}$.
- ▶ $D_{\Delta t}(H_o)$: The time delay distance, a deterministic function of H_o .

DATA FOR TIME DELAY

Data for a doubly-lensed quasar are two time series (light curves) with known measurement errors.

Image Credit: Dobler et al. (2015)

We can estimate Δ by the horizontal shift between two time series.

TIME DELAY CHALLENGE

Time Delay Challenge (Dobler et al., 2015; Liao et al., 2015)

- A blind competition held by 8 astrophysicists from 2013 to 2014.
- Goal was to improve existing estimation methods.
- ▶ 5,000+ simulated data sets with some time delays.
- 13 teams blindly analyzed the simulated data sets.

Image Credit: HBO website

TIME DELAY LENS MODELING CHALLENGE

Another blind competition to improve lens-modeling methods (Ding+, 2018+).

Image Credit: https://www.youtube.com/watch?v=iE8x9kDHCFo

Modeling the lens: Lens mass \rightarrow lens potential \rightarrow Fermat potential. (The mass density is the second derivative of the lens potential.)

OUTLINE OF TDLMC

The time delay lens modeling challenge is a three-step blind competition composed of four rungs. Each rung shares the same (simulated) Hubble constant. The difficulty increases as we move up higher rungs.

- Rung 0: The true H_o is disclosed for participant's reference. Two images, one for a doubly-lensed image and the other for a quadruply-lensed image. The point spread function is provided.
- Rung 1: 16 images. Due was Sep 8. Real galaxy images for realistic surface brightness are used for simulations.
- Rung 2: 16 images. Due is Jan 8. On top of Rung 1's difficulty, a guess of the point spread function is provided for each image.
- Rung 3: 16 images. Due is May 8. In addition to all challenges in Rungs 1 and 2, images are generated by massive early-type galaxies.

IMAGE DATA

Image data (from the left): (i) Light intensity (brightness) in 100×100 pixels, (ii) measurement errors, (iii) point spread function (used in (i)).

LENS MODELING

We model (i) lens mass, (ii) lens brightness, and (iii) source brightness.

Image Credit: Michael Sachs (from Wiki)

Angular positions (unknown param.)

- β : Source position in the absence of the lens.
- θ : Lensed image position.
- $\hat{\alpha}$: Deflection angle.
- $\alpha(\theta)$: Scaled deflection angle for the image at θ .
- $\beta = \theta \alpha(\theta)$: The lens equation.

Given the lens mass distribution, we can infer $\alpha(\theta)$ and β .

LENS MODELING (CONT.)

Outline of lens modeling:

- 1. Setting (choosing) a lens mass density function, $\Sigma(D_d\theta)$.
- 2. Deriving a dimensionless surface mass density, $\kappa(\theta) = \Sigma(D_d \theta) / \Sigma_{cr}$, where Σ_{cr} is the critical surface mass density. For example, with an elliptical power-law mass density,

$$\kappa(heta_{i1}, heta_{i2}) = rac{3-\gamma'}{2} \left(rac{\sqrt{q heta_{i1}^2+ heta_{i2}^2/q}}{ heta_{E}}
ight)^{1-\gamma'},$$

where θ_E is the radius of Einstein ring, q is the ellipticity, and γ' is the radial power-law slope.

- 3. Computing $\alpha(\theta) = \frac{1}{\pi} \int_{\mathbb{R}^2} d^2 \theta' \kappa(\theta') \frac{\theta \theta'}{|\theta \theta'|^2}$.
- 4. Computing lens potential: $\psi(\theta) = \frac{1}{\pi} \int_{\mathbb{R}^2} d^2 \theta' \kappa(\theta') \log |\theta \theta'|$.
- 5. Finally, the Fermat potential is computed as $\phi(\theta) = \alpha(\theta)^2/2 \psi(\theta)$.

LENS MODELING (CONT.)

The number of unknown parameters is 22 (double) or 28 (quad).

We use a Python package lenstronomy (Birrer+, 2015, 2016, 2018) to fit a lens model on the image data. Fitting the model is a two-step procedure; (i) particle swarm optimization to find a global optimum of 20–26 parameters; (ii) MCMC initialized at the global optimum.

Given the observed data (1st), it reconstructs the image (estimate) based on the fitted model (2nd), and shows a residual plot (3rd = 2nd - 1st).

Result of Rung 0

Observed images (1st column), estimated images (2nd column), and residuals (3rd column).

Posterior of one Fermat potential difference from a double-image.

Posteriors of three Fermat potential differences from a quad-image.

The marginal posterior distribution of H_o is closed-form.

$$\begin{split} \Delta \hat{\phi}_{ij} \mid H_o \sim \mathrm{N} \left[\frac{c \Delta \hat{t}_{ij}}{D_{\Delta t}(H_o)}, \ \frac{c^2}{D_{\Delta t}^2(H_o)} \sigma_{\Delta \hat{t}_{ij}}^2 + \sigma_{\Delta \hat{\phi}_{ij}}^2 \right] \\ H_o \sim \mathrm{Unif}(50, \ 90). \end{split}$$

The resulting posterior of H_o based on the four pairs of $\Delta \hat{\phi}_{ij}$ and $\sigma^2_{\Delta \hat{\phi}_{ij}}$ (time delays $\Delta \hat{t}_{ij}$ and their uncertainties $\sigma^2_{\Delta \hat{t}_{ij}}$ are given):

Result of Rung 1

16 lens image data sets (simulated under the same H_o) to be analyzed.

Analytic sequence for **one** image data set as an example.

 We fit our model on this image data set with 12 variations each for a combination of four different values of point spread function error inflation (1%, 5%, 10%, 20%) and three different lens light models (1, 2 or 3 lens light models) → 12 Fermat potential difference estimates and their uncertainties.

2. We derive the posterior of H_o using each pair of Fermat potential difference estimate and uncertainty, leading to 12 posteriors of H_o :

3. We collect pairs of Fermat potential estimate and uncertainty that result in the posterior mode of H_o between 50 and 90 (between red vertical dashed lines).

 $4. \ \mbox{We take an average of the collected pairs in three ways:}$

(1) Weighted average and variance

$$\Delta \hat{\phi}_{AB} = \frac{\sum_{i=6}^{7} \Delta \hat{\phi}_{AB}^{(i)} / \sigma_{\Delta \hat{\phi}_{AB}}^2}{\sum_{i=6}^{7} 1 / \sigma_{\Delta \hat{\phi}_{AB}}^2} \quad \text{and} \quad \sigma_{\Delta \hat{\phi}_{AB}}^2 = \frac{1}{\sum_{i=6}^{7} 1 / \sigma_{\Delta \hat{\phi}_{AB}}^2}.$$

(2) Sample mean of estimates, and sample mean of variance

$$\Delta \hat{\phi}_{AB} = \frac{1}{2} \sum_{i=6}^{7} \Delta \hat{\phi}_{AB}^{(i)} \quad \text{and} \quad \sigma_{\Delta \hat{\phi}_{AB}}^2 = \frac{1}{2} \sum_{i=6}^{7} \sigma_{\Delta \hat{\phi}_{AB}}^{(i)}$$

(3) Sample mean of estimates, and sample variance of estimates

$$\Delta \hat{\phi}_{AB} = \frac{1}{2} \sum_{i=6}^{7} \Delta \hat{\phi}_{AB}^{(i)} \quad \text{and} \quad \sigma_{\Delta \hat{\phi}_{AB}}^2 = \sum_{i=6}^{7} (\Delta \hat{\phi}_{AB}^{(i)} - \Delta \hat{\phi}_{AB})^2.$$

We applied the estimation routine to 16 images and could successfully analyze 11 images out of 16, leading to 25 Fermat potential difference estimates and their uncertainties.

The following three estimates are reported:

The two lenses below (marked by red question marks) result in the H_o estimates close to 90. What about removing them?

The following three estimates are additionally reported:

CONCLUDING REMARKS

Our contribution is to provide a way to combine Fermat potential difference estimates obtained from independent image data sets.

- > The weighted average method works pretty well.
- The third way to make the representative estimate, i.e., the sample mean and variance of estimates (not using the uncertainty estimates) will not be used for rung 2.
- For rung 2, I will not put my personal curiosity (no additional three submissions), trusting what the data tell us.
- ▶ The due for rung 2 is Jan 5.