Astronomical source detection and background separation via hierarchical Bayesian nonparametric mixtures

Andrea Sottosanti

October 2, 2018

University of Padua - Department of Statistical Sciences sottosanti@stat.unipd.it

From University of Padua:

- Mauro Bernardi
- Alessandra R. Brazzale

from Imperial College London:

- David van Dyk
- Roberto Trotta
- Alex Geringer-Sameth
- David Stenning

High-energy astronomical count maps

(Image Credit: NASA/DOE/Fermi LAT Collaboration)

• Let $\mathcal D$ be a $I\times J\times K$ array of pixels:

 $\mathcal{D}_{ijk} = \#$ photons spatially projected into ij with energy level k.

• Let $\mathcal D$ be a $I\times J\times K$ array of pixels:

 $\mathcal{D}_{ijk} = \#$ photons spatially projected into ij with energy level k.

• Let $\mathcal D$ be a $I\times J\times K$ array of pixels:

 $\mathcal{D}_{ijk} = \#$ photons spatially projected into ij with energy level k.

The statistical unit: Photons i = 1, ..., n with directions

$$\mathbf{x}_i = (x_i, y_i) \in \mathcal{X} = (x_{min}, x_{max}) \times (y_{min}, y_{max})$$

and energy level

$$E_i \in (E_{min}, E_{max}).$$

Two main relevant sources of information:

- Astronomical sources at different levels of energies;
- background contamination.

Start from $\{(x_i, y_i, E_i)\}_{i=1}^n$

Start from $\{(x_i, y_i, E_i)\}_{i=1}^n \implies$ Infer on the sources in the map

Start from $\{(x_i, y_i, E_i)\}_{i=1}^n \implies$ Infer on the sources in the map

- discover and locate the high-energy astronomical sources in a sky map;
- 2. quantify their intensities;
- 3. distinguish them from the irregular background contamination spread over the analysed area.

•
$$\mathbf{x}_i = (x_i, y_i), E_i$$
 with $i = 1, ..., n$ and $Z \in \{0, 1\}$,

$$\mathbf{x}_i, E_i | Z_i = z \sim \begin{cases} s(\mathbf{x}_i, E_i) & z = 1 \implies \text{Source model} \\ b(\mathbf{x}_i, E_i) & z = 0 \implies \text{Background model}. \end{cases}$$

•
$$\mathbf{x}_i = (x_i, y_i), E_i \text{ with } i = 1, \dots, n \text{ and } Z \in \{0, 1\},\$$

$$\mathbf{x}_i, E_i | Z_i = z \sim \begin{cases} s(\mathbf{x}_i, E_i) & z = 1 \implies \text{Source model} \\ b(\mathbf{x}_i, E_i) & z = 0 \implies \text{Background model}. \end{cases}$$

• Given $\delta \in (0,1),$

$$f(\mathbf{x}_i, E_i) = \delta s(\mathbf{x}_i, E_i) + (1 - \delta)b(\mathbf{x}_i, E_i).$$

Single source model

Single source model

• A photon *i* from a source *j* spreads around it as

$$\mathbf{x}_i | E_i \sim \mathcal{N}(\boldsymbol{\mu}_j, \sigma_{E_i}^2 I_2), \qquad \boldsymbol{\mu}_j \in \mathcal{X}.$$

• The spectral information from the sources is taken as

$$E_i \sim Par_t(\lambda_s, E_{\min}, E_{\max}), \qquad \lambda_s \in (1, 4).$$

Single source model

• A photon i from a source j spreads around it as

$$\mathbf{x}_i | E_i \sim \mathcal{N}(\boldsymbol{\mu}_j, \sigma_{E_i}^2 I_2), \qquad \boldsymbol{\mu}_j \in \mathcal{X}.$$

• The spectral information from the sources is taken as

$$E_i \sim Par_t(\lambda_s, E_{\min}, E_{\max}), \qquad \lambda_s \in (1, 4).$$

Unknown Parameters	Known Parameters
$oldsymbol{\mu}_j$: location of the source j	$\sigma_{E_i}^2$: variance parameter
λ_s : spectral parameter	

• Unknown number of sources in the map.

- Unknown number of sources in the map.
- Each source can be anywhere in the sky.

- Unknown number of sources in the map.
- Each source can be anywhere in the sky.
- Each source has a different intensity.

- Unknown number of sources in the map.
- Each source can be anywhere in the sky.
- Each source has a different intensity.

Multiple sources model

$$s(\mathbf{x}_i, E_i | \mathcal{F}, \lambda_s) = p(\mathbf{x}_i | E_i, \mathcal{F}) g(E_i | \lambda_s),$$

where

$$p(\mathbf{x}_i | E_i, \mathcal{F}) = \int \phi(\mathbf{x}_i | \boldsymbol{\mu}, \sigma_{E_i}^2 I_2) \mathcal{F}(d\boldsymbol{\mu}),$$
$$\mathcal{F} \sim \mathcal{DP}(\alpha_s, \mathcal{F}_0),$$

with

$$\mathcal{F}_0(\boldsymbol{\mu}) = \mathcal{U}(x_{min}, x_{max}) \times \mathcal{U}(y_{min}, y_{max})$$

• The model can be rewritten as

$$s(\mathbf{x}_i, E_i | \boldsymbol{\mu}, \lambda_s, \boldsymbol{\pi}^s) = \sum_{j=1}^{\infty} \pi_j^s \phi(\mathbf{x}_i | \boldsymbol{\mu}_j, \sigma_{E_i}^2) p(E_i | \lambda_s),$$

$$V_j \sim Beta(1, \alpha_s), \qquad \pi_1^s = V_1, \qquad \pi_j^s = V_j \prod_{k=1}^{j-1} (1 - V_k),$$
$$\mu_j \sim \mathcal{U}(\mathcal{X}), \qquad \lambda_s \sim \mathcal{U}(1, 4).$$

• Why should we have an infinite mixture?

- Why should we have an infinite mixture?
- Jones et al (2015) propose to model $s(\mathbf{x}_i, E_i)$ as a finite mixture, and the number of clusters is selected through reversible jump MCMC.

- Why should we have an infinite mixture?
- Jones et al (2015) propose to model $s(\mathbf{x}_i, E_i)$ as a finite mixture, and the number of clusters is selected through reversible jump MCMC.
 - 1. with BNP, $K \to \infty$ as $n \to \infty:$ the number of clusters grows with the sample size.

- Why should we have an infinite mixture?
- Jones et al (2015) propose to model $s(\mathbf{x}_i, E_i)$ as a finite mixture, and the number of clusters is selected through reversible jump MCMC.
 - 1. with BNP, $K \to \infty$ as $n \to \infty:$ the number of clusters grows with the sample size.
 - 2. Simulation algorithm for BNP are simple to implement and explore the parameter space faster than the reversible jump MCMC.

• it has an irregular and unpredictable behaviour;

- it has an irregular and unpredictable behaviour;
- it tends to be smoother than the sources;

- it has an irregular and unpredictable behaviour;
- it tends to be smoother than the sources;
- no parametric models are available to account for it.

The B-spline basis function

• For $x \in \mathbb{R}$, a **B-spline basis function** of order m is defined as

$$B_m(x|\boldsymbol{\xi}) = \frac{x - \xi_1}{\xi_{m+1} - \xi_1} B_{m-1}(x|\boldsymbol{\xi}_{1:m}) + \frac{\xi_{m+1} - x}{\xi_{m+1} - \xi_2} B_{m-1}(x|\boldsymbol{\xi}_{2:(m+1)}),$$

where $B_1(x|a,b) = I(a \le x \le b)$.

• $B_m(\cdot|\cdot)$ is always positive, unimodal and simple to normalize.

Modelling $b(\cdot)$: a (Bayesian) nonparametric approach

• Given $I_j = (l_{j1}, \dots, l_{j5})$ and $b_j = (b_{j1}, \dots, b_{j5})$, we define $\mathcal{P}(\mathbf{x}_i | I_j, b_j) \propto B_4(x_i | I_j) B_4(y_i | b_j).$

Modelling $b(\cdot)$: a (Bayesian) nonparametric approach

- Given $I_j = (l_{j1}, \dots, l_{j5})$ and $b_j = (b_{j1}, \dots, b_{j5})$, we define $\mathcal{P}(\mathbf{x}_i | I_j, b_j) \propto B_4(x_i | I_j) B_4(y_i | b_j).$
- The energy is modelled as

$$E_i | \lambda_b \sim Par_t(\lambda_b, E_{\min}, E_{\max})$$

Modelling $b(\cdot)$: a (Bayesian) nonparametric approach

- Given $I_j = (l_{j1}, \dots, l_{j5})$ and $b_j = (b_{j1}, \dots, b_{j5})$, we define $\mathcal{P}(\mathbf{x}_i | I_j, b_j) \propto B_4(x_i | I_j) B_4(y_i | b_j).$
- The energy is modelled as

$$E_i | \lambda_b \sim Par_t(\lambda_b, E_{\min}, E_{\max})$$

Our proposal

$$b(\mathbf{x}_i, E_i | \mathcal{G}, \lambda_b) = k(\mathbf{x}_i | \mathcal{G}) g(E_i | \lambda_b),$$

where

$$k(\mathbf{x}_i|\mathcal{G}) = \int \mathcal{P}(\mathbf{x}_i; \mathbf{I}, \mathbf{b}) \mathcal{G}(d\mathbf{I}, d\mathbf{b}), \qquad \mathcal{G} \sim \mathcal{DP}(\alpha_b, \mathcal{G}_0).$$

Background model: an alternative representation

• The model can be rewritten as

$$b(\mathbf{x}_i, E_i | \mathbf{I}, \mathbf{b}, \lambda_b, \mathbf{\pi}^b) = \sum_{j=1}^{\infty} \pi_j^b \mathcal{B}_4(x_i | \mathbf{I}_j) \mathcal{B}_4(y_i | \mathbf{b}_j) g(E_i | \lambda_b),$$

$$U_j \sim Beta(1, \alpha_b), \qquad \pi_1^b = U_1, \qquad \pi_j^b = U_j \prod_{k=1}^{j-1} (1 - U_k),$$

Background model: an alternative representation

• The model can be rewritten as

$$b(\mathbf{x}_i, E_i | \mathbf{I}, \mathbf{b}, \lambda_b, \pi^b) = \sum_{j=1}^{\infty} \pi_j^b \mathcal{B}_4(x_i | \mathbf{I}_j) \mathcal{B}_4(y_i | \mathbf{b}_j) g(E_i | \lambda_b),$$

$$U_j \sim Beta(1, \alpha_b), \qquad \pi_1^b = U_1, \qquad \pi_j^b = U_j \prod_{k=1}^{j-1} (1 - U_k),$$

$$l_{j1} \sim \mathcal{U}(x_{\min}, x_{\max}), \qquad l_{jk} \sim \mathcal{U}(l_{j(k-1)}, x_{\max}),$$
$$b_{j1} \sim \mathcal{U}(y_{\min}, y_{\max}), \qquad b_{jk} \sim \mathcal{U}(b_{j(k-1)}, y_{\max}), \quad k = 2, \dots, 5$$

Background model: an alternative representation

• The model can be rewritten as

$$b(\mathbf{x}_i, E_i | \mathbf{I}, \mathbf{b}, \lambda_b, \mathbf{\pi}^b) = \sum_{j=1}^{\infty} \pi_j^b \mathcal{B}_4(x_i | \mathbf{I}_j) \mathcal{B}_4(y_i | \mathbf{b}_j) g(E_i | \lambda_b),$$

$$U_j \sim Beta(1, \alpha_b), \qquad \pi_1^b = U_1, \qquad \pi_j^b = U_j \prod_{k=1}^{j-1} (1 - U_k),$$

$$l_{j1} \sim \mathcal{U}(x_{\min}, x_{\max}), \qquad l_{jk} \sim \mathcal{U}(l_{j(k-1)}, x_{\max}),$$
$$b_{j1} \sim \mathcal{U}(y_{\min}, y_{\max}), \qquad b_{jk} \sim \mathcal{U}(b_{j(k-1)}, y_{\max}), \quad k = 2, \dots, 5$$

 $\lambda_b \sim Unif(1,4).$

Proposition

Let X be a random variable with a density function corresponding to $B_m(\cdot|\pmb{\xi}).$ Then

$$Var(X) = \frac{\sum_{p=1}^{m} \sum_{q=p+1}^{m+1} (\xi_p - \xi_q)^2}{(m+1)^2 (m+2)}.$$
Proposition

Let X be a random variable with a density function corresponding to $B_m(\cdot|\boldsymbol{\xi})$. Then

$$Var(X) = \frac{\sum_{p=1}^{m} \sum_{q=p+1}^{m+1} (\xi_p - \xi_q)^2}{(m+1)^2 (m+2)}.$$

• We impose a constraint $\forall j$ such that

$$\frac{\sum_{p=1}^{m} \sum_{q=p+1}^{m+1} (\xi_{jp} - \xi_{jq})^2}{(m+1)^2 (m+2)} > \psi,$$

with $\boldsymbol{\xi}_j = \{\boldsymbol{I}_j, \boldsymbol{b}_j\}$ and, given c > 1,

$$\psi = c \cdot \max_i \sigma_{E_i}^2.$$

The statistical model: a graphical representation

• Let

$$\mathcal{S}^{(t)} = \{i = 1, \dots, n : Z_i^{(t)} = 1\} \text{ and } \mathcal{B}^{(t)} = \{i = 1, \dots, n : Z_i^{(t)} = 0\}.$$

• We admit at most k_s components for s and k_b components for b.

• Let

$$\mathcal{S}^{(t)} = \{i = 1, \dots, n : Z_i^{(t)} = 1\} \text{ and } \mathcal{B}^{(t)} = \{i = 1, \dots, n : Z_i^{(t)} = 0\}.$$

- We admit at most k_s components for s and k_b components for b.
- For $t = 1, \ldots, T$, iterate the followings:

• Let

$$\mathcal{S}^{(t)} = \{i = 1, \dots, n : Z_i^{(t)} = 1\} \text{ and } \mathcal{B}^{(t)} = \{i = 1, \dots, n : Z_i^{(t)} = 0\}.$$

- We admit at most k_s components for s and k_b components for b.
- For $t = 1, \ldots, T$, iterate the followings:
 - 1. pull photons into $\mathcal{S}^{(t)}$ and $\mathcal{B}^{(t)}$ and update $\delta^{(t)}|\cdots \sim Beta(\alpha_0 + |\mathcal{S}^{(t)}|, \alpha_0 + |\mathcal{B}^{(t)}|);$

• Let

$$\mathcal{S}^{(t)} = \{i = 1, \dots, n : Z_i^{(t)} = 1\} \text{ and } \mathcal{B}^{(t)} = \{i = 1, \dots, n : Z_i^{(t)} = 0\}.$$

- We admit at most k_s components for s and k_b components for b.
- For $t = 1, \ldots, T$, iterate the followings:
 - 1. pull photons into $S^{(t)}$ and $B^{(t)}$ and update $\delta^{(t)}|\cdots \sim Beta(\alpha_0 + |S^{(t)}|, \alpha_0 + |B^{(t)}|);$
 - 2. update the weights

$$V_j|\mathcal{S}^{(t)} \sim Beta(n_j^{(t)} + 1, \sum_{k>j} n_k^{(t)} + \alpha_s) \Longrightarrow \pi_j^{s(t)}|\mathcal{S}^{(t)}, \quad j = 1, \dots, k_s,$$
$$U_j|\mathcal{B}^{(t)} \sim Beta(n_j^{(t)} + 1, \sum_{k>j} n_k^{(t)} + \alpha_b) \Longrightarrow \pi_j^{b(t)}|\mathcal{B}^{(t)}, \quad j = 1, \dots, k_b.$$

• Let

$$\mathcal{S}^{(t)} = \{i = 1, \dots, n : Z_i^{(t)} = 1\} \text{ and } \mathcal{B}^{(t)} = \{i = 1, \dots, n : Z_i^{(t)} = 0\}.$$

- We admit at most k_s components for s and k_b components for b.
- For $t = 1, \ldots, T$, iterate the followings:
 - 1. pull photons into $S^{(t)}$ and $B^{(t)}$ and update $\delta^{(t)}| \cdots \sim Beta(\alpha_0 + |S^{(t)}|, \alpha_0 + |B^{(t)}|);$
 - 2. update the weights

$$V_j|\mathcal{S}^{(t)} \sim Beta(n_j^{(t)} + 1, \sum_{k>j} n_k^{(t)} + \alpha_s) \Longrightarrow \pi_j^{s(t)}|\mathcal{S}^{(t)}, \quad j = 1, \dots, k_s,$$
$$U_j|\mathcal{B}^{(t)} \sim Beta(n_j^{(t)} + 1, \sum_{k>j} n_k^{(t)} + \alpha_b) \Longrightarrow \pi_j^{b(t)}|\mathcal{B}^{(t)}, \quad j = 1, \dots, k_b.$$

3. update

$$(\boldsymbol{\mu}_j, \lambda_s)^{(t)} | \mathcal{S}^{(t)}, \dots \qquad \forall j = 1, \dots, k_s,$$

$$(\boldsymbol{I}_j, \boldsymbol{b}_j, \lambda_b)^{(t)} | \mathcal{B}^{(t)}, \dots \qquad \forall j = 1, \dots, k_b.$$

Application on a simulated dataset

- Let $\mathcal D$ be a $200\times 200\times 25$ array:
 - > $\mathcal{X} = (-4.975, 5.025) \times (-4.975, 5.025)$; each spatial bin is large 0.05.
 - > Energy divided into 25 log10-spaced bins in the range (1GeV, 316.2278GeV)
- The dataset consists in a background component and 5 sources in the following locations:

• We sample the counts from each source using a tabulated Point Spread Function and differential flux

$$\frac{\partial F}{\partial E} = F_0 \left(\frac{E}{E_0}\right)^{-\lambda}, \qquad F_0 = 1 \cdot 10^{-9}, \ \lambda = 2, \ E_0 = 1 GeV.$$

- A subset of 10000 photons is used.
- Hyperparameters are chosen to be as follows:

$$\alpha = 1, \qquad \alpha_s \sim Gamma(9,3) \qquad \alpha_b = 1.$$

Density estimation

Posterior results: spectral parameters

• The spectral parameters λ_s and λ_b are.

• Number of active components inside the two mixtures after burn-in:

Posterior results

• Given $K_s = \arg \max_k \sum_t I(K_s^{(t)} = k)$, the draws from the posterior distribution of μ under K_s are:

Posterior results

• Given $K_s = \arg \max_k \sum_t I(K_s^{(t)} = k)$, the draws from the posterior distribution of μ under K_s are:

A post-processing algorithm to quantify the information from the posterior distribution of μ is required.

Post processing algorithm: stage 1

{μ₁^(t),...,μ_{Ks}^(t)} be the set of draws from the posterior distribution of μ when the number of active clusters is K_s.

 fit a nonparametric density (or alternatively a 3D-histogram) to determine the most relevant points in the previous map: (m₁,...,m_p). • For each $\mu_k^{(t)}$, find the point such that

$$\min_{j=1,\dots,K_s} ||\boldsymbol{\mu}_k^{(t)} - \mathbf{m}_j|| < r, \tag{1}$$

where r is a given threshold.

• For each $\mu_k^{(t)}$, find the point such that

$$\min_{j=1,\dots,K_s} ||\boldsymbol{\mu}_k^{(t)} - \mathbf{m}_j|| < r, \tag{1}$$

where r is a given threshold.

• If there exists j which satisfies (1), label $\mu_k^{(t)}$ as j.

• For each $\mu_k^{(t)}$, find the point such that

$$\min_{j=1,\dots,K_s} ||\boldsymbol{\mu}_k^{(t)} - \mathbf{m}_j|| < r, \tag{1}$$

where r is a given threshold.

- If there exists j which satisfies (1), label $\pmb{\mu}_k^{(t)}$ as j.
- If no j satisfies (1), label $\mu_k^{(t)}$ as noise.

Post processing algorithm: stage 2

• The relabelled draws from μ are:

Post processing algorithm: stage 2

• The relabelled draws from μ are:

• The new labels can be applied also to $(\pi_1^s, \ldots, \pi_{K_s}^s)^{(t)}$ to have an estimate on the intensity of each cluster.

cluster	#counts	$\mathbb{E}(N \dots)$	2.5%	25%	75%	97.5%	$\mathbb{P}(source)$
1*	136	215.631	150.475	196.000	238.000	274.000	1.000
2 *	166	182.073	123.000	162.250	205.750	237.950	0.956
3*	160	185.511	147.650	173.250	198.000	225.000	1.000
4 *	138	231.967	178.825	211.250	252.000	282.350	1.000
5 *	149	220.270	173.825	206.000	234.750	263.350	1.000
6	//	19.324	1.000	10.250	29.000	45.350	0.124
7	//	43.056	23.425	34.500	51.500	64.575	0.066

*: the cluster coincides with a real source.

A second simulated dataset

- A subset of 10000 photons is used.
- Hyperparameters are chosen to be as follows:

$$\alpha = 1, \qquad \alpha_s \sim Gamma(9,3) \qquad \alpha_b = 1.$$

• The dataset consists in a background component and 9 sources in the following locations:

Density estimation

Posterior results: spectral parameters

• The spectral parameters λ_s and λ_b are.

Posterior results: number of components

• Number of active components inside the two mixtures after burn-in:

Applying the post processing algorithm, step 1

Applying the post processing algorithm, step 2

cluster	#counts	$\mathbb{E}(N \dots)$	2.5%	25%	75%	97.5%	$\mathbb{P}(source)$
1*	138	202.295	142.000	186.000	222.000	252.000	1.000
2 *	163	145.190	105.500	134.000	158.000	180.000	0.996
3*	138	174.956	135.650	163.000	186.500	206.700	1.000
4 *	148	210.665	156.900	197.000	224.000	253.000	1.000
5 *	126	184.093	131.000	167.000	201.500	234.000	1.000
6 *	139	165.066	119.650	151.500	179.000	205.000	1.000
7*	141	191.802	140.650	178.500	208.000	241.350	1.000
8*	141	196.612	148.600	184.500	211.000	238.700	1.000
9 *	160	214.907	158.300	202.000	230.000	258.700	1.000
10		36.884	10.125	31.000	45.000	62.000	0.643
11	//	41.057	14.350	27.750	51.750	91.300	0.388

*: the cluster coincides with a real source.

• We proposed a new approach to the analysis of astronomical 2D-images via hierarchical Bayesian nonparametric mixture modelling.

- We proposed a new approach to the analysis of astronomical 2D-images via hierarchical Bayesian nonparametric mixture modelling.
- Our method is capable of:

- We proposed a new approach to the analysis of astronomical 2D-images via hierarchical Bayesian nonparametric mixture modelling.
- Our method is capable of:
 - 1. reconstructing the background component;

- We proposed a new approach to the analysis of astronomical 2D-images via hierarchical Bayesian nonparametric mixture modelling.
- Our method is capable of:
 - 1. reconstructing the background component;
 - 2. locating the possible sources in the map;

- We proposed a new approach to the analysis of astronomical 2D-images via hierarchical Bayesian nonparametric mixture modelling.
- Our method is capable of:
 - 1. reconstructing the background component;
 - 2. locating the possible sources in the map;
 - 3. quantifying their intensities.

- We proposed a new approach to the analysis of astronomical 2D-images via hierarchical Bayesian nonparametric mixture modelling.
- Our method is capable of:
 - 1. reconstructing the background component;
 - 2. locating the possible sources in the map;
 - 3. quantifying their intensities.
- Even if the posterior distribution of the source model parameters is multimodal, we can quantify the intensity of each mode and estimate its probability of being a source.

Bibliography

- Ackermann, M. et al. (Fermi-LAT Collaboration) (2013). Determination of the point-spread function for the Fermi Large Area Telescope from on-orbit data and limits of pair halos of Active Galactic Nuclei. The Astrophysical Journal, 765:54–73.
- De Boor, C. (2001). A Practical Guide to Splines (Revised Edition). Applied Mathematical Sciences 27, Springer.
- Hobson, M. P., Jaffe, A. H., Liddle, A. R., Mukherjee, P., and Parkinson, D.] (2010). *Bayesian Methods in Cosmology*. Cambridge University Press.
- Ishwaran, H. and Zarepour, M. (2000) Markov chain Monte Carlo in approximate Dirichlet and beta two-parameter process hierarchical models. Biometrika 87:371–390

Bibliography

- Ishwaran, H. and James, L. F. (2001) *Gibbs sampling methods for stick-breaking priors.* Journal of the American Statistical Association 96.453: 161–173.
- Jones, D. E., Kashyap, V. L., and van Dyk, D. A. (2015). Disentangling overlapping astronomical sources using spatial and spectral information. The Astrophysical Journal, 808:137–161.
- Sethuraman, J. (1994) A constructive definition of Dirichlet prior. Statistica sinica 2:639–650
- Sottosanti, A., Costantin, D., Bastieri, D., and Brazzale, A. R. Discovering and Locating High-Energy Extra-Galactic Sources by Bayesian Mixture Modelling. Working Paper Series, N. 2, May 2018, Department of Statistical Sciences, University of Padua.