SNR 0509-68.7

1 Summary

- Common Name: N 103B
- Distance: 50 kpc (distance to LMC, Westerlund(1990))
- Center of X-ray emission (J2000): (05 08 59.7, -68 43 35.5)
- X-ray size: 32'' x 30''
- Description: ??

1.1 Summary of Chandra Observations

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Obs ID</th>
<th>Instrument</th>
<th>Exposure$_{uf}$ (ks)</th>
<th>Exposure$_f$ (ks)</th>
<th>Date Observed</th>
<th>Aimpoint (J2000) (α, δ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500012</td>
<td>125</td>
<td>ACIS-23678</td>
<td>40.3</td>
<td>32.4</td>
<td>1999-12-04</td>
<td>(05 08 59.0, -68 43 30.0)</td>
</tr>
</tbody>
</table>

Exposure$_{uf}$ → Exposure time of un-filtered event file
Exposure$_f$ → Exposure time of filtered event file

- The whole remnant is covered by chip ACIS-S3(CCD ID=7)

1.2 Chandra Counts and Fluxes

<table>
<thead>
<tr>
<th>Region</th>
<th>Energy Range (keV)</th>
<th>Signal (counts)</th>
<th>Rate (counts s$^{-1}$)</th>
<th>F_X^{hs} (ergs cm$^{-2}$ s$^{-1}$)</th>
<th>F_X (ergs cm$^{-2}$ s$^{-1}$)</th>
<th>L_X (ergs s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>0.3 - 10.0</td>
<td>2.261e+05</td>
<td>6.982e+00</td>
<td>2.19e-11</td>
<td>5.94e-11</td>
<td>1.77e+37</td>
</tr>
<tr>
<td></td>
<td>(125)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.3 - 2.1</td>
<td>2.168e+05</td>
<td>6.694e+00</td>
<td>1.88e-11</td>
<td>5.61e-11</td>
<td>1.67e+37</td>
</tr>
<tr>
<td></td>
<td>2.1 - 10.0</td>
<td>9.437e+03</td>
<td>2.914e-01</td>
<td>3.16e-12</td>
<td>3.37e-12</td>
<td>1.00e+36</td>
</tr>
</tbody>
</table>

- $N_H = 0.31 \times 10^{22} cm^{-2}$
- Assumed distance: 50 kpc (distance to LMC, Westerlund(1990))
- n_H was derived with two thermal plasma model
1.3 Nearby Sources

<table>
<thead>
<tr>
<th>Obs ID</th>
<th>Position (J2000)</th>
<th>Size</th>
<th>Net Count</th>
<th>Count rate</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td>(05 07 36.3, -68 47 52.7)</td>
<td>< 14.1"</td>
<td>322.0</td>
<td>7.99e-03</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>(05 08 03.1, -68 40 16.5)</td>
<td>< 7.2"</td>
<td>67.9</td>
<td>1.69e-03</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>(05 08 08.4, -68 40 46.4)</td>
<td>< 6.1"</td>
<td>135.0</td>
<td>3.35e-03</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>(05 08 12.9, -68 44 35.6)</td>
<td>< 5.9"</td>
<td>61.3</td>
<td>1.52e-03</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>(05 08 32.7, -68 54 29.1)</td>
<td>< 17.6"</td>
<td>881.0</td>
<td>2.19e-02</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>(05 08 48.0, -68 45 53.7)</td>
<td>< 2.5"</td>
<td>5.0</td>
<td>1.24e-04</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>(05 09 06.8, -68 39 37.2)</td>
<td>< 3.6"</td>
<td>49.2</td>
<td>1.22e-03</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>(05 09 17.1, -68 40 52.9)</td>
<td>< 1.8"</td>
<td>34.7</td>
<td>8.61e-04</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>(05 09 39.8, -68 53 25.4)</td>
<td>< 15.5"</td>
<td>51.2</td>
<td>1.27e-03</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>(05 09 48.2, -68 39 57.5)</td>
<td>< 3.1"</td>
<td>19.7</td>
<td>4.89e-04</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>(05 10 09.3, -68 52 52.0)</td>
<td>< 16.2"</td>
<td>117.0</td>
<td>2.90e-03</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>(05 10 22.7, -68 39 12.8)</td>
<td>< 8.8"</td>
<td>53.4</td>
<td>1.33e-03</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>(05 10 22.8, -68 50 57.9)</td>
<td>< 16.3"</td>
<td>51.9</td>
<td>1.29e-03</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>(05 10 26.1, -68 52 31.7)</td>
<td>< 19.2"</td>
<td>51.2</td>
<td>1.27e-03</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>(05 10 36.4, -68 40 29.7)</td>
<td>< 10.3"</td>
<td>50.9</td>
<td>1.26e-03</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>(05 10 45.9, -68 56 28.8)</td>
<td>< 33.6"</td>
<td>675.0</td>
<td>1.68e-02</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>(05 10 48.3, -68 45 25.7)</td>
<td>< 12.3"</td>
<td>1080.0</td>
<td>2.68e-02</td>
<td></td>
</tr>
</tbody>
</table>

(note) 1. This nearby source list is incomplete.
 All the above sources are originally from the "src2.fits" file
 which is distributed with standard chandra processing.
 Only sources with significant count rate and which are clear to
 visual inspection are included.
2. The size given above is the size of the region used in detecting
 that source.
3. For each source, background was subtracted from annular region
 around the source.

1.4 References

- Dickel and Milne, 1995 AJ, 109, 200 : ATCA
- Westerlund, 1990 A&ARv, 2, 29 : Distance to LMC
2 Fit Detail

- See spectrum page for used regions.

Two component were assumed.

2.1 Component 1:

- represented by region far east

\[
\text{source} = (x\text{swabs} \times x\text{svapec})
\]

reduced \(\chi^2 = 1.3488\)

\(nH = 0.2826 \times 10^{22}/cm^2\)

2.2 Component 2:

- represented by region small clump around center

\[
\text{source} = (x\text{swabs} \times (x\text{sapec} + x\text{sapec}))
\]

reduced \(\chi^2 = 1.89472\)

\(nH = 0.3378 \times 10^{22}/cm^2\)

2.3 Total:

- Above two component were added together.

- fit was done with all the parameter(except nH and normalization factor)
 fixed at values from above fit.

\[
\text{source} = (x\text{swabs} \times ((x\text{sapec} + x\text{sapec}) + x\text{svapec}))
\]

reduced \(\chi^2 = 20.8426\)

\(nH = 0.3071 \times 10^{22}/cm^2\)
3 Chandra Images : Band Images
- Left : raw image, binned by 1x1 pixel
- Right : gaussian smoothed version of above ($\sigma = 2$ pixel)

3.1 Wide Band Images
Total : 300-10000 eV

Soft Band : 300-2100 eV
3.2 Band images used in true color image.

Red : 300-600 eV
Green : 600-900 eV

Blue : 900-10000 eV
3.3 Misc.

: 1650-2150 eV

: 4200-10000 eV
4 Chandra Images: True Color

- Individual images are adaptively smoothed.
- Warning: the adaptive smoothing process sometimes produces artifacts.
- Convolution method: fft
- Kernel type: gauss
- Significance: (min, max): (3, 5)

RED: 300-600 eV
GREEN: 600-900 eV
BLUE: 900-10000 eV
5 Chandra Images: Equivalent Width Map

5.1 Equivalent Width Images

- individual images (line and two continuum) are binned by given pixel size and then adaptively smoothed.
- same scale map (from the least count images) was used for all three images.
- continuum at given line position was estimated by linear interpolation of two continuum image in pixel-by-pixel base.

<table>
<thead>
<tr>
<th>Continuum</th>
<th>Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>300-500 eV</td>
<td>500-700 eV</td>
</tr>
<tr>
<td>500-700 eV</td>
<td>700-1100 eV</td>
</tr>
<tr>
<td>700-1100 eV</td>
<td>1430-1670 eV</td>
</tr>
<tr>
<td>1430-1670 eV</td>
<td>1670-2080 eV</td>
</tr>
<tr>
<td>1670-2080 eV</td>
<td>2080-2330 eV</td>
</tr>
</tbody>
</table>
6 Chandra Spectrum

- Images show Regions used to extract spectra
- Regions with red strikes are excluded

6.1 ObsID 125

- Background was subtracted from the region around the SNR.
far east
small clump around center
7 Radio Image

- left : radio image
- right : chandra x-ray image with radio contour lines

3.5-cm

- 3.5-cm flux density: 015 Jy
- Image from Dickel and Milne(1995)

6-cm

- 6-cm flux density: 0.26 Jy
- Image from Dickel and Milne(1995)
Summary of Observation

Telescope Australia Telescope Compact Array
Date 1992 Jun 27, 1993 Feb 21, Mar 15, Mar20
Frequency . . . 4.790
Beam size . . . 3.0"
1 sigma noise . . 0.10 mJy / beam
8 Images from Survey Missions

- Left: Chandra Image (0.3-10 keV)
- Center: Images from SkyView with the same scale
- Right: Images from SkyView with a reduced scale

ROSAT PSPC (1.0 deg): X-ray (0.1-2.4 keV)

IRAS 12 micron: Infrared (12 micron)

IRAS 25 micron: Infrared (25 micron)
IRAS 60 micron: Infrared (60 micron)

IRAS 100 micron: Infrared (100 micron)

4850 MHz: Radio (4850 MHz continuum)

Digitized Sky Survey: Optical (J or E band images with a few exceptions)
The Two Micron All Sky Survey (J-band): IR (1.25 microns)

The Two Micron All Sky Survey (H-band): IR (1.65 microns)

The Two Micron All Sky Survey (K-band): IR (2.17 microns)