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Luminosity Functions with Dark Sources

1

Figure: X-ray sources in a part of Chandra Deep Field South. Yellow=sources
detected in the X-ray catalogue, blue=optical sources.

Objective: to estimate the distribution of X-ray flux among sources.
Challenges:

1 Large number of X-ray sources with common characteristics.
2 Observed number of photon count Yi contaminated by background.
3 Some sources are X-ray ‘dark’.
4 Some source regions overlap.
1Image source: Autenrieth (2023)
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Intro to some relevant astrophysical concepts

For each X-ray source i :

Point spread function (PSF): specifies the radius for source region i
which ∼ 90% of the photons from source i will be observed.

Source intensity λi (count/s/cm
2): (rescaled) expected source count

from source i .

Luminosity function: specifies the distributions of source intensities in
a population.

Inference for such is formulated via Si , the number of photons from source
i .
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Problem: a large number of iid X-ray sources

very large numbers of X-ray sources in populations

sources can have independent intensities

source intensities identicaly distributed
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Solution: a Bayesian hierarchical model
Model structure for source intensity parameters λ:

Figure: Hierarchical structure of the population of source intensity parameters.
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Instrumental (deterministic) variables to account for

Likelihoods: 2

(Yi |ξ, λi )
indep∼ Poisson ((aiξ + rieiλi )T )

(X |ξ) ∼ Poisson(AξT )

- ai (pixels): area of source region i .

- T (s): exposure time for the pure background and source observations.

- ri : proportion of photons from the source that are expected to fall in
the source region.

- ei (cm
2): telescope effective area at the source location.

- A(pixel): area of which the background count is collected.

- The location of each source.

2This work is a continuation from Wang et al. (2023).
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Problem: non-homogeneous background contamination

Likelihoods:

(Yi |ξ, λi )
indep∼ Poisson ((aiξ + rieiλi )T )

(X |ξ) ∼ Poisson(AξT )

1 The universe is 3-D, but telescopic images are 2-D.

2 Observed photons are background contaminated.

3 The background contamination is inhomogeneous (projected angle).

4 Bi : the number of photons from background in source region i .

5 This makes Si not directly observable.

6 We only observe the total photon counts in each source region i ,
Yi = Si + Bi .

7 Si and Bi are not directly observable! X and Y are observations.
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Previous solution: background subtraction

Consider Si = Yi − Bi .
When Bi is large but the source is faint - ‘negative’ Si?
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New solution: background contamination parameters ξ

Previous likelihoods:

(Yi |ξ, λi )
indep∼ Poisson ((aiξ + rieiλi )T )

(X |ξ) ∼ Poisson(AξT )

1 Consider rates ξ = (ξ1, . . . , ξK )(count/s/pixel) for different
background regions k = 1, · · · ,K (depending on projected angles).

2 Observe pure backgrounds X = (X1, . . . ,XK ):

Xk |ξk
indep∼ Poisson(AkξkT )

to get information on ξ.

3 Then latent variables Bi |ξk
indep∼ Poisson(aiξkT ).

Si and Bi are not directly observable! X and Y are observations.
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Problem: X-ray ‘dark’ sources

Weak X-ray sources are lost in the background.

loads of such sources observed =⇒ some X-ray photons detected

a single such source is observed =⇒ rare to detect X-ray photons

It is possible that some optical sources don’t emit X-rays.
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Solution: zero-inflated distributions

Figure: Zero-inflated gamma density

For the population of distributions for source intensities, with the
proportion of dark sources being πd ,

λi |µ, θ, πd

{
= 0 with probability πd ,

∼ Gamma[µ, θ] with probability 1− πd .
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Problem: overlapping source regions

●
●

●

●

●

●

●

●

i=1

i=2
i=3

i=4

i=5

i=6

i=7

i=8

intersection
of regions
1, 2, and 4

Figure: Overlapping sources.3 The highlighted area is s = {1, 2, 4}.

1 The X-ray source regions overlap.

2 The source rates in intersections are not independent of each other.

3 We do not observe Yi directly, but only Ys for each segment s.

3image source: Wang et al. (2023)
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Solution: adjustments in the likelihoods

Re-parametrise the likelihood as the following:

The area of the segment, as(pixels);

The effective area of the segment, es(cm
2);

The expected proportion of photons from source i ∈ s that are
recorded in segment s, rs,i .

Source counts per source per segment:

Ss,i |λi
indep∼ Poisson(rs,iesλiT )
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Solution: adjustments in the likelihoods

Define ρs :=
∑

i∈s rs,iλi .
Observed counts per segment s if segment s is in the background region k:

Ys =
∑
i∈s

Ss,i + Bs =⇒

(Ys |ξk ,λ)
indep∼ Poisson

((
asξk +

∑
i∈s

rs,iesλi

)
T

)
d
= Poisson ((asξk + esρs) T )
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Key features of the statistical model in use

1 Large number of X-ray sources with common characteristics. A
Bayesian hierarchical model.

2 Observed number of photon count Yi contaminated by background.
Background intensity parameters ξ.

3 Some X-ray sources can be X-ray ‘dark’. Zero-inflated population
distributions for source intensities λ.

4 Some source regions overlap. Source intensity likelihood modified
accordingly.
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DAG of the statistical model
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A simple simulation study
without overlapping sources and with homogeneous background

4

Figure: NGC 2516 Southern Beehive

Simulate each λi and Yi to mimic Chandra observation of open
cluster NGC 2516:

- T = 5× 104, A = 2.5× 107, ξ = 2× 10−7

Reduced cluster size: n = 10.

dim(parameter)=14.

Suppose true values:
µ = 3× 10−4, θ = 2× 10−8, πd = 0.5, ξ = 2× 10−7.

4Image source: https://www.astrobin.com/full/hleuhx/0/
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A simple simulation study
without overlapping sources and with homogeneous background

Figure: NGC 2516 Southern Beehive

Simulation steps for photon counts5:
1 Simulate the background count X ∼ Poisson(AξT = 2.5× 105).

2 Simulate [reT λ1, . . . , reT λn] with λi
indep∼ zero-inflated

Gamma[reT µ, (reT )2θ] with p(λi = 0) = πd .

3 Set Bi
indep∼ Poisson(aξT ), Si ∼ Poisson(reT λi ) and Yi = Bi + Si .

5as in Wang et al. (2023)
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Nested sampling (full posterior) diagnostics

Dynesty (Koposov et al. (2023)) used. A NS on (µ, θ, πd , ξ,λ).
Stopping criteria: posterior weight per iteration Dlogz ≤ 10−10.
Results from a typical run:

52723 iterations, 703 seconds.

log marginal likelihood estimate: −74.92± 0.1394.
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Nested sampling (full posterior) results

Figure: NS posterior samples with no overlapping sources.
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Marginalising the population of source intensity parameters

dim(parameter space) = n+4

Marginalise out the population of parameters:

p(µ, θ, πd , ξ
∣∣D) =

∫
Rn
+

p(µ, θ, πd , ξ,λ|D)dλ

∝p(µ)p(θ)p(ξ)p(πd)

∫
Rn
+

L(ξ,λ|D)p(λ|µ, θ, πd)dλ

pros: dim(parameter space) is fixed at 4, improves sampler efficiency.

cons: no direct information on λ available. A second sampler is
needed to infer λ.
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Nested sampling (marginal posterior) diagnostics

Stopping criteria: posterior weight per iteration Dlogz ≤ 10−10.
By using a new statistical marginalisation method (more on this later), I
can construct a NS on (µ, θ, πd , ξ) only.
Results from a typical run:

37174 iterations, 135 seconds.

log marginal likelihood estimate: −75.16± 0.1026.
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Nested sampling (marginal posterior) results

6

Figure: NS (negative-binomial parametrised) posterior samples under model
without overlapping sources.

This density-and-contour plot is under the same scale as the previous
density-and-contour plot.

6Gamma-Poisson mixing gives a negative binomial distribution.
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A more complicated simulation study
with overlapping sources and nonhomogeneous background

Table: Background counts and average background counts per pixel in different
regions in the Chandra/HRC-I observation of the open cluster NGC 2516.

Projected Angle Count Area (pixels) Average count per pixel

0-6 (k=1) 219962 22029408 0.0100

6-8 (k=2) 146332 14093856 0.0104

8-16 (k=3) 285300 26448800 0.0108

Figure: The overlap structure of sources used for simulation study 7

7source of base picture and data: Wang et al. (2023)
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A more complicated simulation study
with overlapping sources and nonhomogeneous background

Suppose true values: µ = 3× 10−4, θ = 2× 10−8, πd = 0.5.

1 Estimate ξ̂ using real data and mle: ξ̂mle =
Xk
AkT .

2 Transform ξ̂ from per bkgd region (ξk) to per source segment (ξs).

3 Simulate [λ1, . . . , λn] from zero-inflated Gamma.

4 Set segment areas as , segment effective areas es , proportion of
photons from source rs,i .

5 Transform source intensity parameters from per source to per
segment, eT ρ = eT

∑
i∈s rs,iλi .

6 Simulate Bs
indep∼ Poisson(as ξ̂sT ), Ss ∼ Poisson(eT ρs), Ys = Bs +Ss .
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Nested sampling diagnostics

Stopping criteria: posterior weight per iteration Dlogz ≤ 10−10.
A NS on (µ, θ, πd , ξ,λ), λ not marginalised out.
Results from a typical run:

53107 iterations, 791 seconds.

log marginal likelihood estimate: −119.4± 0.1605.
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Nested sampling results

This density-and-contour plot is under the same scale as the previous
density-and-contour plot.
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Conclusion and computational issues

A sophisticated statistical model for astronomers’ need.

Possible to implement NS for model and obtain sensible inferences.

Parameter-space dimension increases with number of sources /
overlapping structure.

The sampler / inference can run into trouble if there is too much
overlap.

A general statistical marginalisation method is useful.
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The statistical marginalisation method
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The model marginalisation integral
From now on:

ξ denotes hyperparameters;

θ denotes parameters;

y denotes observations.

Bayes’ formula for the full posterior:

p(ξ,θ|y) ∝ p(ξ)p(θ|ξ)p(y|θ).

Law of total probability:

p(ξ|y) =
∫
Ωθ

p(ξ,θ|y)dθ.

Combining the two:

p(ξ|y) ∝ p(ξ)

∫
Ωθ

p(y|θ)p(θ|ξ)dθ = p(ξ)p(y|ξ), (1)

A marginalised Bayes’ formula.
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Evaluating the model marginalisation integral

Facts:

pPoisson(y |θ) =
θy

y !
e−θ, and

dy

dty
etθ = θyetθ

and
Mθ(t) = E(etθ), for suitable t ∈ R.
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Derivatives of prior moment-generating function
with Poisson likelihoods, univariate, 1 observation∫

Ωθ

p(y |θ)p(θ|ξ)dθ

=Eθ|ξ[p(y |θ)]

=
1

y !
Eθ|ξ[θ

ye−θ]

=
1

y !
Eθ|ξ[θ

yetθ]
∣∣
t=−1

=
1

y !
Eθ|ξ

[
dy

dty
etθ
] ∣∣∣∣

t=−1

=
1

y !

dy

dty
Eθ|ξ

[
etθ
] ∣∣∣∣

t=−1

=
1

y !

dy

dty
Mθ|ξ(t)

∣∣∣∣
t=−1

Facts:

pPoisson(y |θ) =
θy

y !
e−θ,

dy

dty
etθ = θyetθ

and

Mθ(t) = E(etθ), for suitable t ∈ R.
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mgf-marginalisation with Poisson likelihoods

Theorem (mgf-marginalisation (Poisson likelihood))

Let the length of θ be n ∈ R. For i ∈ {1, 2, . . . , n}, suppose each θi is the
parameter for one yi .
Suppose the likelihood is Poisson and the prior mgf exists and satisfies
Mθ|ξ(−1) < ∞. Then the model marginalisation integral is given by

p(y|ξ) = 1

y1! · · · yn!
∂
∑n

s=1 ys

∂ty11 · · · ∂tynn
Mθ|ξ(t)

∣∣∣∣
t=−1

.

This is the result used for marginalising source intensity parameters with
no overlapping sources.
Without zero-inflation, here y|ξ is negative binomial (easy check).

Siyang Li Estimating the Luminosity Function in the presence of “Dark” sources 35 / 43



Moment generating function for zero-inflated gamma

Mλi
(t)

=E[etλi ]

=πde
0 + (1− πd)EGamma(e

tλi )

=πd + (1− πd)M
Gamma
λi

(t)

=πd + (1− πd)

(
β

β − t

)α

,

Siyang Li Estimating the Luminosity Function in the presence of “Dark” sources 36 / 43



Moment generating function for transformed parameters

Recall ρs =
∑

i∈s rs,iλi .

Mλ(t) = E(et
⊺λ) = E(e

∑I
i=1 tiλi ) =

I∏
i=1

E(etiλi ) =
I∏

i=1

Mλi
(ti ). =⇒

Mρ(ζ) = E(eζ
⊺ρ) = E(eζ

⊺rλ) = Mλ((ζ
⊺r)⊺) =

I∏
i=1

Mλi
((ζ⊺r)i )
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mgf-marginalisation with Poisson likelihoods

Corollary

Suppose λ := rθ, where r ∈ Rm×n is a linear transformation of the
independent parameters θ = (θ1, θ2, . . . , θn), and m ≥ n, m ∈ R, and
suppose each λj is the parameter for one yj for j ∈ {1, 2, . . . ,m} with a
Poisson likelihood. Suppose the prior mgf exists and satisfies
Mθi |ξ((−ζ⊺r)i ) < ∞ for each i ∈ {1, 2, . . . , n}. Then

p(y|ξ) = 1

y1! · · · yn!

[
m∏
s=1

ζyss

]
∂
∑m

s=1 ys

∂ty11 ∂ty22 · · · ∂tymm

n∏
i=1

Mθi |ξ((t
⊺r)i )

∣∣∣∣
t=−ζ

.

This is the result needed for marginalising source intensity parameters with
overlapping sources.
Here y|ξ is no longer as simple as negative binomial.
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Exact calculations for marginal likelihoods

Figure: Hierarchical model marginalisation vs. marginal likelihood computation.

The model marginalisation integral p(y|ξ) is also a marginal likelihood (for
sub-models in the hierarchical structure):

p(θ|y, ξ) = p(y|θ, ξ)p(θ|ξ)
p(y|ξ)

.
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Marginal likelihood computation with Poisson likelihoods

Theorem (mgf marginal likelihood calculation (Poisson likelihood))

Let the θ be the only parameter in the likelihood indexed by the
independent sample y of length n.
Suppose the likelihood is Poisson. Furthermore, suppose the prior mgf
exists and satisfies Mθ|ξ(−n) < ∞. Then the model marginalisation
integral is given by

p(y|ξ) = 1

y1! · · · yn!

(
∂

∂t

)∑n
s=1 ys

Mθ|ξ(t)

∣∣∣∣
t=−n

.
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Extension to gamma likelihoods

Theorem (mgf-marginalisation (gamma likelihood))

Suppose β := rθ > 0, where r ∈ Rn×n is a diagonal matrix that scales the
independent parameters θ = (θ1, θ2, . . . , θn) > 0. Suppose the likelihood is
gamma. Suppose the prior mgf exists and satisfies Mθi |ξ((−r⊺y)i ) < ∞ for
each i ∈ {1, 2, . . . , n}. Then if Mθi |ξ ∈ L1[−∞, uiyi ] and
Mθi |ξ ∗ K

n−α ∈ W n,1([−∞, uiyi ]),

p(y|ξ) =
n∏

i=1

1

Γ(γi )

∂⟨αi ⟩+1

∂t
⟨αi ⟩+1
i

{MLθi |ξ}(γi )
∣∣∣∣
ti=−yi

,

where Lθi |ξ(l) := Mθi |ξ(ri (ti − l)) is the moment generating function,
γ = ⟨αi ⟩+ 1− αi is the fraction part in the fractional derivative, and
∂αi

∂t
αi
i

= Dαi
z+ for z = −∞ is the RL fractional derivative operator in use.

M is the Mellin transform as defined in Equation (2.1) in Luchko and
Kiryakova (2013).
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Bayesian interpretations on moments of distributions?

The moment-calculating equation

E[θk ] =
dk

dtk
Mθ(t)

∣∣∣∣
t=0

is just a special (or limiting) case of the mgf marginal likelihood
calculation equation under Poisson likelihood

p(y|ξ) = 1

y1! · · · yn!

(
∂

∂t

)∑n
s=1 ys

Mθ|ξ(t)

∣∣∣∣
t=−n

.

(or the equivalent result under gamma likelihood).
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DAG of the statistical model
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