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Cross-validation (CV)

Divide data into k
folds

Fit k prediction
rules, each with
one fold held out

Evaluate each
prediction rule on
its held-out set

Average the k error
estimates

Pros:

Unbiased for test error

Lower variance than single train-test split
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How good is my
learning algorithm?

Need: Test error confidence intervals to quantify uncertainty

Problem: Existing intervals often invalid & CV distribution is
complex
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Is algorithm A actually
better than algorithm B?

Need: Trustworthy hypothesis tests of algorithm improvement

Problem: Standard tests (like the cross-validated t-test, the
repeated train-validation t-test, and the 5× 2-fold CV test) do not
appropriately account for dependence and have no correctness
guarantees
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Our Contributions

ALGORITHMIC
STABILITY

CV CENTRAL LIMIT THEOREM
+

CONSISTENT VARIANCE ESTIMATOR

CV CONFIDENCE INTERVALS
FOR TEST ERROR

CV TESTS FOR ALGORITHM
IMPROVEMENT
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CV CLT

(Bayle, Bayle, Janson, and Mackey, 2020)
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Hold-out CLT
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CV t

(Dietterich, 1998)
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(Corrected) repeated train-validation t

(Nadeau and Bengio, 2003)
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5x2 CV

(Dietterich, 1998)
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Notations and Problem Setup

Datapoints Z1, . . . , Zn

Often each Zi = (Xi, Yi) with covariates Xi and response Yi
For any vector B of indices, ZB denotes the corresponding vector
of datapoints

Loss function hn(Zi, ZB): error when training on ZB and
testing on Zi

Regression: hn(Zi, ZB) = (Yi − f̂(Xi;ZB))
2 for f̂(·;ZB) trained

on ZB

Classification: hn(Zi, ZB) = 1[Yi ̸= f̂(Xi;ZB)]

Validation sets {B′
j}k

j=1 and associated training sets {Bj}k
j=1

Validation sets partition datapoint indices {1, . . . , n} into k folds
k can be fixed or grow with n

Cross-validation (CV) error

R̂n = 1
n

∑k
j=1

∑
i∈B′

j
hn(Zi, ZBj

)
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Why CV Error?

Cross-validation error: R̂n = 1
n

∑k
j=1

∑
i∈B′

j
hn(Zi, ZBj

)

k-fold test error: Rn = 1
n

∑k
j=1

∑
i∈B′

j
E[hn(Zi, ZBj

) | ZBj
]

= 1
k

∑k
j=1 E[hn(Z0, ZBj

) | ZBj
]

Average test error of the k prediction rules f̂(·;ZBj
)

Common inferential target

Goal: Establish a central limit theorem for R̂n −Rn
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Application: Confidence Intervals for Test Error

Problem

Construct an asymptotically-exact (1− α)-confidence interval for
k-fold test error Rn

Solution: CV Confidence Interval for Test Error

If we have a CLT and a variance estimator σ̂2
n that satisfies relative

error consistency (σ̂2
n/σ

2
n

p→ 1), then the interval

Cα = R̂n ± q1−α/2 σ̂n/
√
n

satisfies

limn→∞ P(Rn ∈ Cα) = 1− α

where q1−α/2 is the (1− α/2)-quantile of a standard normal
distribution
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Confidence Intervals for Test Error, k=10

Cα = R̂n ± q1−α/2 σ̂n/
√
n with 1− α = 0.95

Our CV CLT procedure: valid coverage, smallest width
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Application: CIs for Test Error Difference

Problem

Construct an asymptotically-exact (1− α)-confidence interval for the
difference in k-fold test errors

Solution: CV Confidence Interval for Test Error Difference

For a target loss function ℓ, define the A1-A2 loss difference

hn(Z0, ZB) = ℓ(Y0, f̂1(X0;ZB))− ℓ(Y0, f̂2(X0;ZB)),

if we have a CLT and a variance estimator σ̂2
n that satisfies relative

error consistency (σ̂2
n/σ

2
n

p→ 1), then the interval

Cα = R̂
(1)
n − R̂

(2)
n ± q1−α/2 σ̂n/

√
n

satisfies

limn→∞ P(R(1)
n −R

(2)
n ∈ Cα) = 1− α
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Application: Tests for Algorithm Improvement

Problem

Construct an asymptotically-exact level α test of whether A1 has
smaller k-fold test error than A2

Solution: CV Test for Improved Test Error

For a target loss function ℓ, define the A1-A2 loss difference

hn(Z0, ZB) = ℓ(Y0, f̂1(X0;ZB))− ℓ(Y0, f̂2(X0;ZB)),

and consider testing H0 : Rn ≥ 0 (A1 not better) against
H1 : Rn < 0 (A1 is better). If we have a CLT and a variance

estimator σ̂2
n that satisfies relative error consistency (σ̂2

n/σ
2
n

p→ 1),
then the test

reject H0 ⇔ R̂n < qασ̂n/
√
n

has asymptotic level α for qα the α-quantile of a standard normal
distribution
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Tests for Algorithm Improvement, k=10, α=0.05
Our CV CLT procedure: valid size, most powerful
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Figure: Size when testing H1 : Err(A1) < Err(A2) (top) and power when testing
H1 : Err(A2) < Err(A1) (bottom) of level-0.05 tests for improved test error.
Left (classif.): A1 = logistic, A2 = NN. Right (reg.): A1 = RF, A2 = ridge.
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Algorithmic Stability

Stability

How much does the performance of a learned prediction rule change
when one point in the training set is changed?

Uniform stability: worst-case change in loss hn

Mean-square stability: mean-square change in loss hn

Loss stability

Mean-square change in loss difference
hn(Z0, Z1:m)− E[hn(Z0, Z1:m) | Z1:m]

Note: γloss(hn) ≤ γms(hn) [Kumar et al., 2013]

[Bousquet and Elisseeff, 2002, Kale et al., 2011, Kumar et al., 2013, Celisse and
Guedj, 2016, . . . ]
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Asymptotic Normality of CV

CV Central Limit Theorem (Bayle, Bayle, Janson, and Mackey, 2020)

Suppose Z0, Z1, · · · , Zn are i.i.d., and define the expected loss
function

hn(Z0) = E[hn(Z0, Z1:n(1−1/k)) | Z0] with σ2
n = Var(hn(Z0)).

If loss stability = o(σ2
n/n) and (hn(Z0)−E[hn(Z0)])

2/σ2
n is uniformly

integrable then
√
n

σn
(R̂n −Rn)

d→ N (0, 1).

Sufficient condition: supn E[|hn(Z0)− E[hn(Z0)]|α/σα
n ] < ∞ for

some α > 2
Many learning algorithms enjoy decaying loss stability
(e.g., SGD, ERM, k-NN, decision trees, ensemble methods)
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Asymptotic Normality of CV

CV Central Limit Theorem (Bayle, Bayle, Janson, and Mackey, 2020)
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Consistent Variance Estimation

Goal: Find a practical estimator σ̂2
n satisfying σ̂2

n/σ
2
n

p→ 1 under
weak conditions.

Within-fold variance estimator σ̂2
n,in

Computes the variance of hn(Zi, ZBj
) in each fold and takes the

average across folds
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Consistent Variance Estimation

Goal: Find a practical estimator σ̂2
n satisfying σ̂2

n/σ
2
n

p→ 1 under
weak conditions.

All-pairs variance estimator σ̂2
n,out

σ̂2
n,out =

1
n

∑k
j=1

∑
i∈B′

j
(hn(Zi, ZBj

)− R̂n)
2

Computes the empirical variance of hn(Zi, ZBj
) across all folds

Advantage: can also be used for leave-one-out cross-validation
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Consistent Variance Estimation

Within-fold variance estimator σ̂2
n,in

σ̂2
n,in = 1

k

∑k
j=1

1
(n/k)−1

∑
i∈B′

j

(
hn(Zi, ZBj

)− k
n

∑
i′∈B′

j
hn(Zi′ , ZBj

)
)2

All-pairs variance estimator σ̂2
n,out

σ̂2
n,out =

1
n

∑k
j=1

∑
i∈B′

j
(hn(Zi, ZBj

)− R̂n)
2

= 1
k

∑k
j=1

k
n

∑
i∈B′

j
(hn(Zi, ZBj

)− R̂n)
2
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Consistent Variance Estimation

Low computational cost

σ̂2
n,in and σ̂2

n,out can be computed in O(n) time, and if loss is binary,

in O(k) and O(1) respectively

When hn is binary, as in the case of 0-1 loss, one can compute

σ̂2
n,out = R̂n(1− R̂n) in O(1) time given access to the overall

cross-validation error R̂n,

σ̂2
n,in = 1

k

∑k
j=1

(n/k)
(n/k)−1

R̂n,j(1− R̂n,j) in O(k) time given access

to the k average fold errors R̂n,j ≜ k
n

∑
i∈B′

j
hn(Zi, ZBj

).
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Consistent Variance Estimation

Theorem: Consistency of CV Variance Estimators (Bayle et al.)

Under exactly the same conditions given for the CV central limit
theorem (loss stability = o(σ2

n/n) and uniform integrability), we have

σ̂2
n,in /σ

2
n

L1

→ 1.

If, additionally, mean-square stability = o(kσ2
n/n), then

σ̂2
n,out /σ

2
n

L1

→ 1.

Mean-square stability condition particularly mild for
leave-one-out CV (k = n), becomes o(σ2

n)
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Conclusions

Summary

New CV central limit theorem under algorithmic stability

Consistent estimators of CV variance

Asymptotically exact confidence intervals and tests for k-fold
test error

Thank you!
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