From least squares to multilevel modeling: A graphical introduction to Bayesian inference

Tom Loredo
Cornell Center for Astrophysics and Planetary Science

Session site:
http://hea-www.harvard.edu/AstroStat/aas227_2016/lectures.html

AAS 227 - 6 Jan 2016

A Simple (?) confidence region

Problem
Estimate the location (mean) of a Gaussian distribution from a set of samples $D=\left\{x_{i}\right\}, i=1$ to N. Report a region summarizing the uncertainty.

Model

$$
p\left(x_{i} ; \mu, \sigma\right)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right]
$$

Here assume σ is known; we are uncertain about μ.

Classes of variables

- μ is the unknown we seek to estimate-the parameter. The parameter space is the space of possible values of μ-here the real line (perhaps bounded). Hypothesis space is a more general term.
- A particular set of N data values $D=\left\{x_{i}\right\}$ is a sample. The sample space is the N-dimensional space of possible samples.

Standard inferences
Let $\bar{x}=\frac{1}{N} \sum_{i=1}^{N} x_{i}$.

- "Standard error" (rms error) is σ / \sqrt{N}
- " 1σ " interval: $\bar{x} \pm \sigma / \sqrt{N}$ with conf. level $\mathrm{CL}=68.3 \%$
- " 2σ " interval: $\bar{x} \pm 2 \sigma / \sqrt{N}$ with $C L=95.4 \%$

Some simulated data

Consider a case with $\sigma=4$ and $N=16$, so $\sigma / \sqrt{N}=1$
Simulate data with true $\mu=5$
What is the CL associated with this interval?

Some simulated data

Consider a case with $\sigma=4$ and $N=16$, so $\sigma / \sqrt{N}=1$
Simulate data with true $\mu=5$
What is the CL associated with this interval?

The confidence level for this interval is $\mathbf{7 9 . 0 \%}$.

Two intervals

- Green interval: $\bar{x} \pm 2 \sigma / \sqrt{N}$
- Blue interval: Let $x_{(k)} \equiv k^{\prime}$ th order statistic $\operatorname{Report}\left[x_{(6)}, x_{(11)}\right]$ (i.e., leave out 5 outermost each side)

Moral
The confidence level is a property of the procedure, not of the particular interval reported for a given dataset.

Performance of intervals

Intervals for 15 datasets

Probabilities for procedures vs. arguments

"The data $D_{\text {obs }}$ support conclusion C . . "

Frequentist assessment
" C was selected with a procedure that's right 95% of the time over a set $\left\{D_{\text {hyp }}\right\}$ that includes $D_{\text {obs }}$."

Probability is a property of a procedure, not of a particular result

Procedure specification relies on the ingenuity/experience of the analyst

"The data $D_{\text {obs }}$ support conclusion C . . .

Bayesian assessment
"The strength of the chain of reasoning from the model and $D_{\text {obs }}$ to C is 0.95 , on a scale where $1=$ certainty."

Probability is a property of an argument: a statement that a hypothesis is supported by specific, observed data

The function of the data to be used is uniquely specified by the model

Long-run performance must be separately evaluated (and is typically good by frequentist criteria)

Bayesian statistical inference

- Bayesian inference uses probability theory to quantify the strength of data-based arguments (i.e., a more abstract view than restricting PT to describe variability in repeated "random" experiments)
- A different approach to all statistical inference problems (i.e., not just another method in the list: BLUE, linear regression, least squares $/ \chi^{2}$ minimization, maximum likelihood, ANOVA, product-limit estimators, LDA classification . . .)
- Focuses on deriving consequences of modeling assumptions rather than devising and calibrating procedures

Agenda

(1) Probability: variability vs. argument strength
(2) Computation: mock data vs. mock hypotheses

Confidence vs. credible regions
Posterior sampling
Nuisance parameters \& marginalization
(3) Graphical models: mock data and mock hypotheses

Agenda

(1) Probability: variability vs. argument strength
(2) Computation: mock data vs. mock hypotheses Confidence vs. credible regions
Posterior sampling
Nuisance parameters \& marginalization
(3) Graphical models: mock data and mock hypotheses

Understanding probability

" X is random . . ."

Frequentist understanding
"The value of X varies across repeated observation or sampling."

Probability quantifies variability
Bayesian understanding
"The value of X in the case at hand is uncertain."
Probability measures the strength with which the available information supports possible values for X (before and/or after measurement or observation)

Interpreting PDFs

Frequentist

Probabilities are always (limiting) rates/proportions/frequencies that quantify variability in a sequence of trials. $p(x)$ describes how the values of x would be distributed among infinitely many trials:

Bayesian

Probability quantifies uncertainty in an inductive inference. $p(x)$ describes how probability is distributed over the possible values x might have taken in the single case before us:

Twiddle notation for the normal distribution

$$
\operatorname{Norm}(x, \mu, \sigma) \equiv \frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{(x-\mu)^{2}}{\sigma^{2}}\right]
$$

Frequentist

$$
\begin{gathered}
\text { random } \quad \text { fixed but unknown } \\
p(x ; \mu, \sigma)=\operatorname{Norm}(x, \mu, \sigma) \\
x \sim N\left(\mu, \sigma^{2}\right)
\end{gathered}
$$

" x is distributed as normal with mean..."
Bayesian

$$
\begin{gathered}
\begin{array}{c}
\text { random } \\
p(x \mid \mu, \sigma)=\operatorname{Norm}(x, \mu, \sigma) \\
x \sim N\left(\mu, \sigma^{2}\right)
\end{array}
\end{gathered}
$$

"The probability for x is distributed as normal with mean..."

Agenda

(1) Probability: variability vs. argument strength
(2) Computation: mock data vs. mock hypotheses

Confidence vs. credible regions
Posterior sampling
Nuisance parameters \& marginalization
(3) Graphical models: mock data and mock hypotheses

Confidence interval for a normal mean

Suppose we have a sample of $N=5$ values x_{i},

$$
x_{i} \sim N(\mu, 1)
$$

We want to estimate μ, including some quantification of uncertainty in the estimate: an interval with a probability attached.

Frequentist approaches: method of moments, BLUE, least-squares $/ \chi^{2}$, maximum likelihood

Focus on likelihood (equivalent to χ^{2} here); this is closest to Bayes.

$$
\begin{aligned}
\mathcal{L}(\mu) & =p\left(\left\{x_{i}\right\} \mid \mu\right) \\
& =\prod_{i} \frac{1}{\sigma \sqrt{2 \pi}} e^{-\left(x_{i}-\mu\right)^{2} / 2 \sigma^{2}} ; \quad \sigma=1 \\
& \propto e^{-\chi^{2}(\mu) / 2}
\end{aligned}
$$

Estimate μ from maximum likelihood (minimum χ^{2}). Define an interval and its coverage frequency from the $\mathcal{L}(\mu)$ curve.

Construct an interval procedure for known μ

Likelihoods for 3 simulated data sets, $\mu=0$

Likelihoods for 100 simulated data sets, $\mu=0$

[Skip some crucial steps here: CL vs. coverage, pivotal quantities. . .]

Applv to observed sample

Report the green region, with coverage as calculated for ensemble of hypothetical data (green region, previous slide).

Likelihood to probability via Bayes's theorem

Recall the likelihood, $\mathcal{L}(\mu) \equiv p\left(D_{\text {obs }} \mid \mu\right)$, is a probability for the observed data, but not for the parameter μ.

Convert likelihood to a probability distribution over μ via Bayes's theorem:

$$
\begin{aligned}
& p(A, B)=p(A) p(B \mid A) \\
&=p(B) p(A \mid B) \\
& \rightarrow p(A \mid B)=p(A) \frac{p(B \mid A)}{p(B)}, \quad \text { Bayes's th. } \\
& \Rightarrow p\left(\mu \mid D_{\text {obs }}\right) \propto \pi(\mu) \mathcal{L}(\mu)
\end{aligned}
$$

$p\left(\mu \mid D_{\text {obs }}\right)$ is called the posterior probability distribution.
This requires a prior probability density, $\pi(\mu)$, often taken to be constant over the allowed region if there is no significant information available (or sometimes constant w.r.t. some reparameterization motivated by a symmetry in the problem).

Gaussian problem posterior distribution

For the Gaussian example, a bit of algebra ("complete the square") gives:

$$
\begin{aligned}
\mathcal{L}(\mu) & \propto \prod_{i} \exp \left[-\frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right] \\
& \propto \exp \left[-\frac{1}{2} \sum_{i} \frac{\left(x_{i}-\mu\right)^{2}}{\sigma^{2}}\right] \\
& \propto \exp \left[-\frac{(\mu-\bar{x})^{2}}{2(\sigma / \sqrt{N})^{2}}\right]
\end{aligned}
$$

The likelihood is Gaussian in μ.
Flat prior \rightarrow posterior density for μ is $\mathcal{N}\left(\bar{x}, \sigma^{2} / N\right)$.

Bayesian credible region

Normalize the likelihood for the observed sample; report the region that includes 68.3% of the normalized likelihood

Credible region via Monte Carlo: posterior sampling

Inference as manipulation of the joint distribution

Bayes's theorem in terms of the joint distribution:

$$
p(\mu) \times p(\vec{x} \mid \mu)=p(\mu, \vec{x})=p(\vec{x}) \times p(\mu \mid \vec{x})
$$

Components of Bayes's theorem for a problem with a 1-D parameter space (θ) and a 2-D sample space (\mathbf{y}), with observed data \mathbf{y}_{d}, and modeling assumptions A

Nuisance Parameters and Marginalization

To model most data, we need to introduce parameters besides those of ultimate interest: nuisance parameters.

Example
We have data from measuring a rate $r=s+b$ that is a sum of an interesting signal s and a background b.
We have additional data just about b.
What do the data tell us about s ?

Marginal posterior distribution

To summarize implications for s, accounting for b uncertainty, the law of total probability \rightarrow marginalize:

$$
\begin{aligned}
p(s \mid D, M) & =\int d b p(s, b \mid D, M) \\
& \propto p(s \mid M) \int d b p(b \mid s, M) \mathcal{L}(s, b) \\
& =p(s \mid M) \mathcal{L}_{m}(s)
\end{aligned}
$$

with $\mathcal{L}_{m}(s)$ the marginal likelihood function for s :

$$
\begin{aligned}
& \mathcal{L}_{m}(s) \equiv \int d b p(b \mid s) \mathcal{L}(s, b) \\
& \approx p\left(\hat{b}_{s} \mid s\right) \mathcal{L}\left(s, \hat{b}_{s}\right) \delta b_{s} \text { best } b \text { given } s \\
& b \text { uncertainty given } s
\end{aligned}
$$

Profile likelihood $\mathcal{L}_{p}(s) \equiv \mathcal{L}\left(s, \hat{b}_{s}\right)$ gets weighted by a parameter space volume factor

Bivariate normals: $\mathcal{L}_{m} \propto \mathcal{L}_{p}$

Flared/skewed/bannana-shaped: \mathcal{L}_{m} and \mathcal{L}_{p} differ

S

General result: For a linear (in params) model sampled with Gaussian noise, and flat priors, $\mathcal{L}_{m} \propto \mathcal{L}_{p}$ Otherwise, they will likely differ, dramatically so in some settings Marginalization offers a generalized form of error propagation, without approximation

Roles of the prior

Prior has two roles

- Incorporate any relevant prior information
- Convert likelihood from "intensity" to "measure" \rightarrow account for size of parameter space

Physical analogy

$$
\text { Heat } Q=\int d \vec{r}\left[\rho(\vec{r}) c_{v}(\vec{r})\right] T(\vec{r})
$$

Probability $P \propto \int d \theta p(\theta) \mathcal{L}(\theta)$
Maximum likelihood focuses on the "hottest" parameters Bayes focuses on the parameters with the most "heat"
A high- T region may contain little heat if its c_{v} is low or if its volume is small
A high- \mathcal{L} region may contain little probability if its prior is low or if its volume is small

Agenda

(1) Probability: variability vs. argument strength
(2) Computation: mock data vs. mock hypotheses Confidence vs. credible regions
Posterior sampling
Nuisance parameters \& marginalization
(3) Graphical models: mock data and mock hypotheses

Density estimation with measurement error

Introduce latent/hidden/incidental parameters
Suppose $f(x \mid \theta)$ is a distribution for an observable, x.

From N precisely measured samples, $\left\{x_{i}\right\}$, we can infer θ from

$$
\begin{gathered}
\mathcal{L}(\theta) \equiv p\left(\left\{x_{i}\right\} \mid \theta\right)=\prod_{i} f\left(x_{i} \mid \theta\right) \\
p\left(\theta \mid\left\{x_{i}\right\}\right) \propto p(\theta) \mathcal{L}(\theta)=p\left(\theta,\left\{x_{i}\right\}\right)
\end{gathered}
$$

(A binomial point process)

Graphical representation

- Nodes/vertices $=$ uncertain quantities (gray \rightarrow known)
- Edges specify conditional dependence
- Absence of an edge denotes conditional independence

Graph specifies the form of the joint distribution:

$$
p\left(\theta,\left\{x_{i}\right\}\right)=p(\theta) p\left(\left\{x_{i}\right\} \mid \theta\right)=p(\theta) \prod_{i} f\left(x_{i} \mid \theta\right)
$$

Posterior from BT: $p\left(\theta \mid\left\{x_{i}\right\}\right)=p\left(\theta,\left\{x_{i}\right\}\right) / p\left(\left\{x_{i}\right\}\right)$

But what if the x data are noisy, $D_{i}=\left\{x_{i}+\epsilon_{i}\right\}$?

$\left\{x_{i}\right\}$ are now uncertain (latent) parameters
We should somehow use member likelihoods $\ell_{i}\left(x_{i}\right)=p\left(D_{i} \mid x_{i}\right)$:

$$
\begin{aligned}
p\left(\theta,\left\{x_{i}\right\},\left\{D_{i}\right\}\right) & =p(\theta) p\left(\left\{x_{i}\right\} \mid \theta\right) p\left(\left\{D_{i}\right\} \mid\left\{x_{i}\right\}\right) \\
& =p(\theta) \prod_{i} f\left(x_{i} \mid \theta\right) \ell_{i}\left(x_{i}\right)
\end{aligned}
$$

Marginalize over $\left\{x_{i}\right\}$ to summarize inferences for θ
Marginalize over θ to summarize inferences for $\left\{x_{i}\right\}$
Key point: Maximizing over x_{i} and integrating over x_{i} can give very different results!

Graphical representation

$$
\begin{aligned}
p\left(\theta,\left\{x_{i}\right\},\left\{D_{i}\right\}\right) & =p(\theta) p\left(\left\{x_{i}\right\} \mid \theta\right) p\left(\left\{D_{i}\right\} \mid\left\{x_{i}\right\}\right) \\
& \left.=p(\theta) \prod_{i} f\left(x_{i} \mid \theta\right) p\left(D_{i} \mid x_{i}\right)=p(\theta)\right]_{i} f\left(x_{i} \mid \theta\right) \ell_{i}\left(x_{i}\right)
\end{aligned}
$$

A two-level multi-level model (MLM)

Recap of Key Ideas

Probability as generalized logic
Probability quantifies the strength of arguments
To appraise hypotheses, calculate probabilities for arguments from data and modeling assumptions to each hypothesis
Use all of probability theory for this
Bayes's theorem
p (Hypothesis | Data) $\propto p$ (Hypothesis) $\times p$ (Data | Hypothesis)
Data change the support for a hypothesis \propto ability of hypothesis to predict the data

Law of total probability

$$
p(\text { Hypotheses } \mid \text { Data })=\sum p(\text { Hypothesis } \mid \text { Data })
$$

The support for a compound/composite hypothesis must account for all the ways it could be true

Bayesian tutorials (basics \& MLMs): CASt 2015 Summer School
 2014 Canary Islands Winter School

Tutorials on Bayesian computation:
SCMA 5 Bayesian Computation tutorial notes
CASt 2014 Supplement Sessions
Literature entry points:
Overview of MLMs in astronomy: arXiv:1208.3036
Discussion of recent B vs. F work: arXiv:1208.3035
See online resource list for an annotated list of Bayesian books and software

