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The Likelihood Function 

• Let a probability distribution function for ⇠ have m + 1

parameters a

j
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The joint probability distribution for n samples of ⇠ is
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) = f(~⇠,~a).

• Now make measurements. For each variable ⇠
i

there is a measured

value x

i

.

• To obtain the likelihood function L(~x,~a), replace each variable ⇠
i

with

the numerical value of the corresponding data point x

i

:

L(~x,~a) ⌘ f(~x,~a) = f(x
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,~a).

In the likelihood function the

~
x are known and fixed, while the

~
a are

the variables.



A Simple Example 

• Suppose the probability

distribution for the data is

f(⇠, a) = a

2⇠e�a⇠.

• Measure a single data point. It

turns out to be x = 2.

• The likelihood function is

L(x = 2, a) = 2a

2

e

�2a.



A Somewhat More Realistic Example 

Suppose we have n independent data points, each drawn from the same

probability distribution

f(⇠, a) = a

2⇠e�a⇠.

The joint probability distribution is
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The data points are x

i

. The resulting likelihood function is

L(~x, a) =
nY

i=1

a
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i

e

�axi.



What Is the Likelihood Function? – 1 

The likelihood function is not a probability distribution.

• It does not transform like a probability distribution.

• Normalization is not defined.

How do we deal with this?

Traditional approach: Use the Likelihood Ratio.

To compare the likelihood of two possible sets of

parameters ~a1 and ~a2, construct the likelihood ratio:

LR =
L(~x,~a1)

L(~x,~a2)
=

f(~x,~a1)

f(~x,~a2)
.

This is the ratio of the probabilities that data ~x
would be produced by parameter values ~a1 and ~a2.



What Is the Likelihood Function? - 2 

Compare all parameter values to a single set of fiducial parameter values

~
a

0

. The likelihood ratio becomes

LR =
L(~x,~a)

L(~x,~a
0

)
/ L(~x,~a).

This likelihood ratio and therefore the likelihood

function itself is proportional to the probability that

the observed data

~
x would be produced by param-

eter values

~
a.



What Is the Likelihood Function? - 3 

An increasingly common and highly attractive approach (although it is

unclear that everyone knows what they are doing):

Treat the likelihood function like a probability distribution!

• The quantity

L(~x,~a)d~a = L(~x,~a)da
0

da

1

da

2

· · ·da
m

does transform like probability. This usage is entirely consistent with

the standard definition of probability density.

• To normalize L(~x,~a), define a multiplicative factor A such that

1 = A

Z
L(~x,~a)d~a.

Then AL(~x,~a) is normalized (but normalization never needed).



Likelihood Statistics 

The likelihood function contains information about the new data.

(I am in the camp that says it contains all the new information.)

One can extract information from L(~x,~a) in the same way one extracts

information from an (un-normalized) probability distribution:

• calculate the mean, median, and mode of parameters.

• plot the likelihood and its marginal distributions.

• calculate variances and confidence intervals.

• Use it as a basis for �2 minimization!

But beware: One can usually get away with thinking of the likelihood

function as the probability distribution for the parameters ~a, but this is

not really correct. It is the probability that a specific set of parameters

would yield the observed data.



The Maximum Likelihood Principle 

The maximum likelihood principle is one way to extract information from

the likelihood function. It says, in e↵ect,

“Use the modal values of the parameters.”

The Maximum Likelihood Principle

Given data points

~
x drawn from a joint probability dis-

tribution whose functional form is known to be f(~⇠,~a),
the best estimate of the parameters

~
a are those that

maximize the likelihood function L(~x,~a) = f(~x,~a).

Find the maximum values by setting

@L

@a
j

����
â

= 0.

These m + 1 equations are the “likelihood equations.”



Maximum Likelihood Estimation 

Recall our previous example: n independent data points x

i

drawn from

f(⇠, a) = a

2⇠e�a⇠.

The likelihood function is

L(~x, a) =
nY

i=1

a

2

x

i

e

�ax

i.

The best estimate of a occurs at the

maximum of L(~x, a), which occurs at

@L(~x, a)

@a

����
â

= 0 )
h
a bit of

algebra

i
) â =

2nP
x

i

If n = 4 and

~
x = (2,4,5,5),

then â = 1/2.



The Log-Likelihood Function 

For computational convenience, one often prefers to deal with the log of

the likelihood function in maximum likelihood calculations.

This is okay because the maxima of the likelihood and its log occur at

the same value of the parameters.

The log-likelihood is defined to be

`(~x,~a) = ln {L(~x,~a)}

and the likelihood equations become
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A Fully Realistic Example - 1 

We have n independent measurements (x

i

, �
i

) drawn from the Gaussians

f
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Thus, the measurements all have the same mean value but have di↵erent

noise. The noise is described by the width of the Gaussians, a di↵erent

width for each measurement.

The joint probability distribution for the data points is

f(
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The joint likelihood function for all the measurements is

L(

~
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A Fully Realistic Example - 2 

The log-likelihood function is

`(~x,~�, a) =
nX

i=1

ln
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From elementary probability theory we know that the mean value of the

Gaussian is a. Let us estimate the mean value.

The likelihood equation for â is
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After some algebra we arrive at

â =

P
n

i=1

w

i

x

iP
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i

, where w

i

= 1/�2

i

This is the same as the weighted average in freqentist statistics!



Fit a Model to Data - 1 
y

x

Have independent data points:

(xi,yi, �i), i = 1, · · · ,n

The yi have errors �i.

We know the yi are drawn from

Gaussian distributions

f(y) / exp


�(y � µ)2

2�2

�
.

To represent the data both µ and � must depend on x.

• The values of � are given explicitly for each xi.

• The values of µ are given as a function of x:

µ = µ(x)



Fit a Model to Data - 2 
y

x

The functional form of µ(x) can be as

complicated as desired.

To keep the example simple, fit a straight

line to the data:

µ = a

0

+ a

1

x

The individual y

i

are now each drawn from Gaussian distributions
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Because the data points are independent of each other, the joint

probability distribution is the product of the individual distributions.

The likelihood function is, therefore,
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Fit a Model to Data - 3 

y

x

The log likelihood function is
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and c is a constant.

The two likelihood equations are
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These are identical to the normal equations for a weighted

least squares (or �2
minimization) solution for â

0

and â

1

.



Comparison to Standard Frequentist Statistics 

• The probability distributions from which the data points are drawn

must be known to apply likelihood statistics, but not for many

standard frequentist techniques.

• If the data have Gaussian distributions, likelihood statistics reduces

to ordinary frequentist statistics.

• Likelihood statistics provides a solid foundation for treating data with

non-Gaussian distributions (e.g., the Poisson distribution in some

astronomical applications).

• If treated as probability distributions, likelihood functions can be

analyzed with all the tools developed to analyze posterior

distributions of Bayesian statistics (e.g., marginal distributions and

MCMC sampling).



Comparison to Bayesian Statistics 

The salient feature of Bayesian statistics: Combine new data with existing

knowledge using Bayes’ equation:

(Posterior Probabiltiy) / (Likelihood)⇥ (Prior Probability).

• Mathematically, likelihood statistics is essentially Bayesian statistics

without a prior probability distribution.

Likelihood function () Posterior distribution

Likelihood ratio () Bayes factor

• It is not Bayesian statistics with a flat or uninformative prior.

– Flatness is not an invariant concept.

– The prior must “know” about the likelihood function to be truly

uninformative.

• Likelihood statistics defines probability as a frequency, not as a

Bayesian state of knowledge or state of belief.


