THEME:
“The Underlying Processes Are the Same Across All Scales and Reference Frames”

OUR JOB: Infer Substances and Physics + Quantify ‘Doubt’
“We can do it right” - Basic Equations -- Model-Based; Computational AstroStatistics

OUTLINE:
Modeling Astrophysics: Lights + Gratings
Grand Tour of “Modern Physics”
Grand Tour of the Skies (Sun Outward)
Additional Thread: History: Women in Astro/Physics/Stat (Boston/Harvard, California, ...)

Thanks to: CBASC; V. Trimble; Lecture/Demo
Example 1: What Do We Mean By:

OUR JOB: Infer Substances and Physics + Quantify ‘Doubt’

“We can do it right” - Basic Equations -- Model-Based; Computational AstroStatistics

Early Example: Galaxy Clustering as done by UCB Astro-Statisticians Elizabeth Scott and Jerzy Neyman

Used nth-order clustering process to model galaxies attracted to each other into clusters; clusters attracted to each other; etc. I.E. a non-parametric method to distill meaning from ‘large’ data-sets.

NOW: More explicit physical models
One bright morning Dr. Wollaston came to pay us a visit in Hanover Square, saying “I have discovered seven dark line crossing the solar spectrum, which I wish to show you;” then, closing the window-shutters so as to leave only a narrow line of light, he put a small glass prism into my hand, telling me how to hold it. I saw them distinctly. I was among the first, if not the very first, to whom he showed these lines, which were the origin of the most wonderful series of cosmic discoveries, and have proved that many of the substances of our globe are also constituents of the sun, the stars, and even the nebulae. Dr. Wollaston gave me the little prism, which is doubly valuable, being of glass manufactured at Munich by Fraunhofer, whose table of dark lines has now become the standard of comparison in that marvellous science, the work of many illustrious men, brough to perfection by Bunsen and Kirchoff.”

OUR JOB: Infer Substances and Physics + Quantify ‘Doubt’
Part 1: Modeling Astrophysics + Instruments + Inference *Via* Local Lights + Gratings

(Pause while we try to do it)
Part 2: Modeling Astrophysics + Instruments + Inference *Via* Equations

Cecelia Payne (Gaposchkin) - 1st Harvard Astronomy Professor; 1st (Arguably) Full Woman Professor; 1st to put together ‘Modern’ physics with Astronomy
Modern Physics: Quantum Mechanics
Electricity/Magnetism/Atomic Physics

* Black-Body: Thermal+ Optically thick
\[I(\nu,T) \, d\nu = \left(\frac{2h\nu^3}{c^2} \right) \left(e^{(h\nu/kT)} - 1 \right)^{-1} \]
-- Sun (roughly)
-- Incandescent bulbs
-- neutron star surfaces, white dwarf surfaces

* Atomic Lines - Simplified 1 electron + 1 nucleus:
Position given by:
\[E = h\nu = \text{Ry}^* \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \]
where \(n_1 \) and \(n_2 \) = diameter of electron orbits in number of wavelengths
Width/Shape (Lorentzian) given by:
\[\Delta E \sim \frac{h}{dt}, \text{ where “t” - time uncertainty} \]
ALSO Density broadening; Doppler Shifts/broadening; electric/magnetic field effects; etc.
Bremsstrahlung + lines / ‘Table’ Plasma Models:
Thermal + Optically thin

\[I(\nu, T) \sim a_0 g(T, \nu) Z^2 n_e n_i T^{-\frac{1}{2}} e^{-\left(\frac{h\nu}{kT}\right)} \]

where \(n_e \) and \(n_i \) are the number density of electrons and ions, respectively;
g is the “Gaunt Factor”; \(Z \) is the nuclear charge; \(a_0 \) is a constant.

\[I(\nu, T) \leq \text{Atomic Line Tables (VL, VK, NB)} \]
-- Solar / stellar corona (roughly)
-- Fluorescent bulbs
-- Supernova remnant shells, knots

* Power Laws - Simplified shock/nonthermal:
Position given by:
\[I(\nu, T) = A (h\nu)^{-\Gamma} \]
Part 2: Modeling Astrophysics + Instruments + Inference *Via Equations* (nuclear)

Left: Maria Goeppert Mayer - “San Diego Housewife Wins Noble Prize” for elucidating *shells* in Nuclei ~1963 ;
Right: Lise Meitner and Otto Hahn Discovering Fission ~1940’s
Modern Physics: Nuclear Physics/Relativistic Physics

Nuclear Force Analogues: Nuclear lines from ‘shells’ in the nucleus -- both from burning (strong force - Nova / Supernova, thermonuclear flashes; stellar interiors; solar flares) and weak force (nuclear decay - remnants of old burning - stars, nova); Compton (photon/electron collisions); pions; etc.

Shock physics: magnetic and non, thermal and non-; relativistic and non-; results depend on particle input spectrum.

Relativistic Magnetic Fields

Pulsars and Magnetars pulling particles out of the vacuum AGAIN from statistics of large numbers of particles.
Taking the Measurements Into Account:

Our Standard Equations for ‘True’ Intensity, Instrument, Data:

\[S(l,b,e,t,\theta) = \text{Expected ‘True’ Source Intensity} \]

(i.e. our physics models)

\[E(l,b,e,t,\varphi) = \text{‘True’ Effective Area} \]

\[\text{PSF}(x,y \mid l,b,e,t,\xi) = \text{‘True’ instrument smearing} \]

\[\Lambda(x,y,e,t,\theta,\varphi,\xi) = \text{‘True’ Expected counts in detector} \]

\[D(x,y,e,t,\theta,\varphi,\xi) = \text{measured counts in detector} \]

\[\Lambda(x,y,e,t,\theta,\varphi,\xi) = \text{PSF}(x,y \mid l,b,e,t,\xi) \times E(l,b,e,t,\varphi) \times S(l,b,e,t,\theta) \]

\[D(x,y,e,t,\theta,\varphi,\xi) \sim \text{Poisson} (\Lambda(x,y,e,t,\theta,\varphi,\xi)) \]
Part 4: Quick Grand Tour of the Sky

* Our Nearest Star in More Detail: The Sun
* Moving Out: Fun Solar System Views
* Stars: What can we learn from Spectra?
SOHO solar images from 2004-sep-08

- **Photosphere**
- **Chromosphere**
- **Magnetogram**
- **Corona**

2004/09/09 00:00
2004/09/08 23:58
2004/09/08 19:06

10^6 K
SOHO solar images from 2004-sep-08

2 10^6 K corona

outer corona

3 10^6 K corona

into the wind ...
Hinode/XRT movies of our Sun:

Left: 2006-Nov-25; Right: 2007-Dec-10
Moving Out: Fun Solar System Views

Focus Position = -406, AI_poly
2006-11-08T18:48:45.394Z

Hinode XRT: Mercury Transit Movie
Chandra observation of Venus (fluorescence, scattering of solar X-rays)
Moon: Rosat X-ray / Fermi γ-ray (cosmic ray activation)
Moving Out: Fun Solar System Views:

Left: X-rays: Chandra observation of Jupiter (aurorae)
Right: Optical for comparison
Moving Out: Fun Solar System Views:

X-rays: Chandra observation of Saturn
Beyond planets: Kuiper Belt; Oort Cloud;

For Later: Ask Pavlos Protopapas and Alex Blocker -- time-domain astronomy!
Stars and Stellar Systems:

* What can we learn from Spectra?
* Populations / Surveys of Stars
Stars: What can we learn from Spectra?

XTEJ1118 CXC grating spectrum
Stars: What can we learn from Spectra?

There is too much Neon!
Stars: What can we learn from Spectra?

TW Hydrae shows evidence for accretion
Evolutionary status of V471 Tau / Beta Ceti / Epsilon Eri
Stars - Within Our Galaxy -- Populations:

Top: Annie Jump Cannon and Stellar Classification System
Bottom: Color Magnitude Diagram
New star forming region in Orion
Old globular cluster 47 Tuc: X-ray (binaries?) and optical
In X-ray: white dwarf shines brighter, Sirius B vs A
What might planets do? (ups And and close-in planet)
Stars - Within Our Galaxy - Compact/Ends

gal center X-ray / gamma-ray
Stars - Within Our Galaxy - Compact/Ends

Fermi pulsar in CTA 1

Tycho remnant Chandra X-ray + optical, IR

Pulsars, Wind Nebulae, SuperNova Remnants, Black Holes

Crab pulsar wind nebula Chandra X-rays 16 yrs of Galactic center star motions weigh black hole
All-Sky Galactic: Gas Clouds; Compact Objects:

ROSAT X-ray (top) vs Fermi γ-Ray (bottom)
All-Sky Galactic Views - Variable Sky:

Fermi Gamma-ray all-sky - North/South View/Movie
AGNs, AGN surveys, quasars,

X-ray Jets in Chandra Era

 - FRI/FRII, Lobe Dominated and Compact Quasars
- Highest redshift GB1508 +5714 at z=4.3

Images:
- 1354+195 by Sambruna et al 2002
- PKS0637-752 by Schwartz et al 2000
- PKS1127-145 by Siemiginowska et al 2002
- GB1508+5714 by Siemiginowska et al 2003

X-rays from black hole in Lyman α ‘Blob’ at 12 billion yrs
END with gamma-ray bursts and CMB:

630 million yrs after big bang (top); CMB (bottom)
END with Scott and Neyman statistics - how far we have come.
THEME:
“The Underlying Processes Are the Same Across All Scales and Reference Frames”

\[\Lambda(x,y,e,t,\theta,\varphi,\xi) = \text{PSF}(x,y|l,b,e,t,\xi)@E(l,b,e,t,\varphi)\ast S(l,b,e,t,\theta) \]

\[D(x,y,e,t,\theta,\varphi,\xi) \sim \text{Poisson} \left(\Lambda(x,y,e,t,\theta,\varphi,\xi) \right) \]

OUR JOB: Infer Substances and Physics + Quantify ‘Doubt’

Now, let’s do it.
Stars - Within Our Galaxy - Compact/Ends

gal center X-ray / gamma-ray
THEME:

gal ras rgb