Accounting for Calibration Uncertainty in Spectral Analysis

David A. van Dyk

Statistics Section, Imperial College London

Joint work with
Vinay Kashyap, Jin Xu, Alanna Connors, and Aneta Siegminowska

ISIS — May 2015

Outline

(1) Bayesian Statistical Methods

- Components of a Statistical Model
- Statistical Computation
(2) Calibration Uncertainty
- The Calibration Sample
- The Effect of Calibration Uncertainty

3 Bayesian Analysis of Calibration Uncertainty

- Pragmatic and Fully Bayesian Solutions
- Empirical Illustration

Outline

(1) Bayesian Statistical Methods

- Components of a Statistical Model
- Statistical Computation
(2) Calibration Uncertainty
- The Calibration Sample
- The Effect of Calibration Uncertainty
(3) Bayesian Analysis of Calibration Uncertainty
- Pragmatic and Fully Bayesian Solutions
- Empirical Illustration

Bayesian Statistical Analyses: Likelihood

Likelihood Functions: The distribution of the data given the model parameters. E.g., $Y \stackrel{\text { dist }}{\sim}$ Poisson $\left(\lambda_{S}\right)$:

$$
\text { likelihood }\left(\lambda_{S}\right)=e^{-\lambda_{S}} \lambda_{S}^{Y} / Y!
$$

Maximum Likelihood Estimation: Suppose $Y=3$

The likelihood and its normal approximation.

Can estimate λ_{S} and its error bars.

Bayesian Analyses: Prior and Posterior Dist'ns

Prior Distribution: Knowledge obtained prior to current data.

Bayes Theorem and Posterior Distribution:
$\operatorname{posterior}(\lambda) \propto$ likelihood $(\lambda) \times \operatorname{prior}(\lambda)$
Combine past and current information:

Bayesian analyses rely on probability theory

Multi-Level Models

A Poisson Multi-Level Model:

Level 1: $Y \mid Y_{B}, \lambda_{S} \stackrel{\text { dist }}{\sim} \operatorname{Poisson}\left(\lambda_{S}\right)+Y_{B}$,
LeVEL 2: $Y_{B} \mid \lambda_{B} \stackrel{\text { dist }}{\sim} \operatorname{Pois}\left(\lambda_{B}\right)$ and $X \mid \lambda_{B} \stackrel{\text { dist }}{\sim} \operatorname{Pois}\left(\lambda_{B} \cdot 24\right)$,
LeVEL 3: specify a prior distribution for λ_{B}, λ_{S}.
Each level of the model specifies a dist'n given unobserved quantities whose dist'ns are given in lower levels.

Bayesian Statistical Methods
Calibration Uncertainty
Bayesian Analysis of Calibration Uncertainty

Multi-Level Models: X-ray Spectral Analysis

PyBLoCXS: Bayesian Low-Count X-ray Spectral Analysis

Embedding Calibration Uncertainty into a Statistical Model

We aim to include calibration uncertainty as a component of the multi-level statistical model fit in PyBLoCXS.

Build a multi-level model

- In addition to spectral parameters, calibration products are treated as unknown quantities.
- Calibration products are high dimensional unknowns.
- Calibration scientists provide valuable prior information about these quantities.
- We must quantify this information into a prior distribution.

Computation becomes a real issue!

Markov Chain Monte Carlo

Exploring the posterior distribution via Monte Carlo.

joint posterior with flat prior

Bayesian Statistical Methods
Calibration Uncertainty
Bayesian Analysis of Calibration Uncertainty

Model Fitting: Complex Posterior Distributions

Highly non-linear relationship among parameters.

Model Fitting: Complex Posterior Distributions

The classification of certain stars as field or cluster stars can cause multiple modes in the distributions of other parameters.

Outline

(1) Bayesian Statistical Methods

- Components of a Statistical Model
- Statistical Computation
(2) Calibration Uncertainty
- The Calibration Sample
- The Effect of Calibration Uncertainty
(3) Bayesian Analysis of Calibration Uncertainty
- Pragmatic and Fully Bayesian Solutions
- Empirical Illustration

The Basic Statistical Model

- Embed physical models into multi-level statistical models.
- Must account for complexities of data generation.
- State of the art computational techniques enable us to fit the resulting highly-structured model.

Calibration Products

- Analysis is highly dependent on Calibration Products:
- Effective Area Cuves
- Exposure Maps
- Energy Redistribution Matrices
- Point Spread Functions
- In this talk we focus on uncertainty in the effective area.

Sample Chandra psf's (Karovska et al., ADASS X)

Calibration Sample

Calibration sample of 1000 representative curves ${ }^{1}$

- Sample exhibits complex variability.
- Requires storing many high dimensional calibration products.

${ }^{1}$ Thanks to Jeremy Drake and Pete Ratzlaff.

Generating Calibration Products on the Fly

We use Principal Component Analysis to represent uncertainty:

$$
A \sim A_{0}+\bar{\delta}+\sum_{j=1}^{m} e_{j} r_{j} \boldsymbol{v}_{j},
$$

A_{0} : default effective area,
$\bar{\delta}$: mean deviation from A_{0},
r_{j} and \boldsymbol{v}_{j} : first m principle component eigenvalues \& vectors, e_{j} : independent standard normal deviations.

Capture 99% of variability with $m=18$.

Checking the PCA Emulator

The Simulation Studies

Simulated Spectra

- Spectra were simulated using an absorbed power law,

$$
f\left(E_{j}\right)=\alpha e^{-N_{H} \sigma\left(E_{j}\right)} E_{j}^{-\Gamma},
$$

accounting for instrumental effects; E_{j} is the energy of bin j.

- Parameters (Γ and N_{H}) and sample size/exposure times:

	Effective Area		Nominal Counts		Spectal Model	
	Default	Extreme	10^{5}	10^{4}	Harder ${ }^{\text {f }}$	Softer ${ }^{\ddagger}$
SIM 1	X		X		X	
Sım 2	X		X			X
Sim 3	X			X	X	

${ }^{\dagger}$ An absorbed powerlaw with $\Gamma=2, N_{\mathrm{H}}=10^{23} / \mathrm{cm}^{2}$
${ }^{\ddagger}$ An absorbed powerlaw with $\Gamma=1, N_{H}=10^{21} / \mathrm{cm}^{2}$

30 Most Extreme Effective Areas in Calibration Sample

15 largest and 15 smallest determined by maximum value

The Effect of Calibration Uncertainty

- Columns represent two simulated spectra.
- True parameters are horizontal lines.
- Posterior under default calibration is plotted in black.
- The posterior is highly sensitive to the choice of effective area!

Bayesian Statistical Methods
Calibration Uncertainty
Bayesian Analysis of Calibration Uncertainty

The Effect of Sample Size

The effect of Calibration Uncertainty is more pronounced with larger sample sizes.

Outline

(1) Bayesian Statistical Methods

- Components of a Statistical Model
- Statistical Computation
(2) Calibration Uncertainty
- The Calibration Sample
- The Effect of Calibration Uncertainty

3 Bayesian Analysis of Calibration Uncertainty

- Pragmatic and Fully Bayesian Solutions
- Empirical Illustration

Accounting for Calibration Uncertainty

We consider inference under:
A Pragmatic Bayesian Target: $\quad \pi_{0}(A, \theta)=p(A) p(\theta \mid A, Y)$.
The Fully Bayesian Posterior: $\pi(A, \theta)=p(A \mid Y) p(\theta \mid A, Y)$.
Here:
$p(\theta \mid A, Y)$: PyBLoCXS posterior with known effective area, \boldsymbol{A}.
$p(A \mid Y)$: The posterior distribution for A.
$p(A)$: The prior distribution for A.
Should we let the current data inform inference for calibration products?

Two Possible Target Distributions

We consider inference under:
A Pragmatic Bayesian Target: $\quad \pi_{0}(A, \theta)=p(A) p(\theta \mid A, Y)$.
The Fully Bayesian Posterior: $\pi(A, \theta)=p(A \mid Y) p(\theta \mid A, Y)$.
Concerns:
Statistical Fully Bayesian target is "correct".
Cultural Astronomers have concerns about letting the current data influence calibration products.
Computational Both targets pose challenges, but pragmatic Bayesian target is easier to sample.
Practical How different are $p(A)$ and $p(A \mid Y)$?

Using Multiple Imputation to Account for Uncertainty

MI is a simple, but approximate, method:

- Fit the model $M \ll 1000$ times, each with random effective area curve from the calibration sample.
- Estimate parameters by averaging the M fitted values.
- Estimate uncertainty by combining the within and between fit errors.

The Multiple Imputation Combining Rules

$$
\hat{\theta}=\frac{1}{M} \sum_{m=1}^{M} \hat{\theta}_{m}, \quad W=\frac{1}{M} \sum_{m=1}^{M} \operatorname{Var}\left(\hat{\theta}_{m}\right)
$$

$$
B=\frac{1}{M-1} \sum_{m=1}^{M}\left(\hat{\theta}_{m}-\hat{\theta}\right)\left(\hat{\theta}_{m}-\hat{\theta}\right)^{\top}, \quad T=W+\left(1+\frac{1}{M}\right) B .
$$

The total variance combines the variances within and between the M analyses.

Accounting for Calibration Uncertainty with MCMC

When using MCMC in a Bayesian setting we can:

- Sample a different effective area from the calibration sample at each iteration according to:
Pragmatic Bayes: $p(A)$
Fully Bayes: $p(A \mid Y)$
- Computational challenges arise in both cases.
- We focus on comparing the results of the two methods.

A Simulation.

- Sampled 10^{5} counts from a power law spectrum: E^{-2}.
- $A_{\text {true }}$ is 1.5σ from the center of the calibration sample.

Sampling From the Full Posterior

Fully Bayes

Spectral Model (purple bullet $=$ truth):

$$
f\left(E_{j}\right)=\theta_{1} e^{-\theta_{1} \sigma\left(E_{j}\right)} E_{j}^{-\theta_{2}}
$$

Pragmatic Bayes is clearly better than current practice, but a Fully Bayesian Method is the ultimate goal.

The Effect in the Analysis of a Binary System

Fitting ζ Ori with a Multithermal Spectral Model

Learning the Effective Area

Results: 95\% Intervals Standardized by Standard Fit

With high counts calibration uncertainty swamps statistical error and fully Bayes identifies A and shifts interval.

Thanks...

Collaborative work with:

- Vinay Kashyap
- Jin Xu
- Alanna Connors
- Hyunsook Lee
- Aneta Siegminowska
- California-Harvard Astro-Statistics Collaboration

If you want more details...
Ree, Le, Kashyap, V., van Dyk, D., Connors, A., Drake, J., Izem, R., Min, S., et al. Accounting for Calibration Uncertainties in X-ray [Spectral] Analysis The Astrophysical Journal, 731, 126-144, 2011.

R Xu, J., van Dyk, D., Kashyap, V., Siemiginowska, A., Connors, A., Drake, J., et al. A Fully Bayesian Method for Jointly Fitting Calibration and X-ray Spectral Models The Astrophysical Journal, 794, 97, 2014.

