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Motivating Problem and Some Notation

RcT = discretized response at temperature T in channel c

We observe counts y = (y1, . . . , yNc )

For simplicity, suppose yc ∼ Poisson(µc), c = 1, . . . ,Nc , where

µc =
∑
T

RcTθT

More compactly,
µ = Rθ,

where µ = (µ1, . . . , µNc ) and R is the Nc × NT response matrix

θ = (θ1, . . . , θNT ) is the DEM

Underdetermined: NT > Nc

Nathan Stein Identifiability



Some Definitions

In general:

Data y

Parameter θ

Likelihood p(y |θ)

A sufficient parameter is a function f (θ) such that

f (θ) = f (θ′) implies that p(y |θ) = p(y |θ′) ∀θ, θ′

An identifiable parameter is a function f (θ) such that

f (θ) 6= f (θ′) implies that p(y |θ) 6= p(y |θ′) ∀θ, θ′

Definitions from Barankin (1960)

If f (θ) is sufficient and identifiable, then it makes sense to write the likelihood
as

p(y |θ) = p(y | f (θ))
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Sufficiency and Identifiability

Intuitively:

sufficiency ensures that the parameter f (θ) is rich enough to “use” all of
the information in the data, and

identifiability ensures that f (θ) is not too rich for the data to be
informative about it.

Examples:

f (θ) = µ = Rθ sufficient and identifiable

f (θ) = µc =
∑

T RcTθT identifiable but not sufficient

f (θ) = θ sufficient but not identifiable
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Partially Identified Models

Existing literature on partially identified models, primarily in
econometrics and causal inference

Example of a partially identified model: Conditional on an identifiable
parameter µ, the parameter of interest θ is known to lie in the set Θ(µ)
(e.g., Moon and Schorfheide, 2012)

The key question: How should we perform (Bayesian or frequentist)
inference on the identified set Θ(µ)?

Connection to the DEM problem:

Θ(µ) = {θ : µ = Rθ}

Separates inference about Θ(µ) (accounting for, e.g., Poisson noise) from
the solution to the underdetermined/ill-posed inverse problem
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The Simplest Case

Suppose we permit ourselves to place a prior p(µ) on the sufficient and
identifiable parameter µ

(Because µ is identifiable, as we collect more data, information about µ will
accumulate via the likelihood.)

This implies a prior for the identified set Θ(µ)

. . . but not a full prior for θ

We can obtain the posterior distribution

p(µ|y) ∝ p(y |µ) p(µ)

Suppose we sample S values from this posterior:

µ(1), . . . , µ(S) ∼ p(µ|y)

Then we can calculate the collection of sets

Θ(µ(1)), . . . ,Θ(µ(S))

The variability in these sets characterizes the uncertainty due to, e.g.,
Poisson noise, without relying on a full prior for θ. This preserves (most
of) the separation between the statistical uncertainty and the ill-posedness.
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Complication: Additional Levels of Uncertainty

Now suppose we want to incorporate additional uncertainties

We encapsulate these in a prior p(R) on the response R

Now the identified set is a function of both µ and R:

Θ(µ,R) = {θ : µ = Rθ}

Naive strategy: alternate between updating µ given R, and R given µ:

µ(s+1) ∼ p(µ | R(s), y)

R(s+1) ∼ p(R | µ(s+1), y)

But it is not clear how to obtain the required conditional distributions
without first specifying a full prior on θ

This sacrifices the separation from the underdetermined/ill-posed inverse
problem.

How can we specify a sensible conditional prior p(µ|R)?
Is there a feasible way to do this coherently without first specifying a prior
on θ?
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