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Seismology of the Solar Atmosphere
Aim: determination of difficult to measure physical parameters in e.g.:

  - Observations:  Wave activity in the solar atmosphere
- Theory: MHD wave interpretation

Combination of: {

Coronal loops Prominences



Wave Activity  - Observations

Existence of wave-like dynamics beyond question

Rosenberg (70); Trottet+(79) …  Aschwanden+(99); Nakariakov+(99); De Pontieu+(07); Okamoto+(07); 
Cirtain+(07); McIntosh+(11); Kuridze+(13); Morton+(12,13,14);Threlfall+(13); Mathioudakis+(13)…

Time/spatial variation of spectral line properties / imaged emission 

Coronal Loops AR Corona
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Prominence plasmasX-ray JetsChromospheric Spicules

+ chromospheric bright points/mottles + coronal hole structures + filament threads…  

SST, DST, CoMP, SoHO, TRACE, Hinode, STEREO, SDO, Hi-C, IRIS: increased detail/coverage  



Method of MHD Seismology

A well established method to obtain information on properties of the solar 
atmospheric plasma and field

   Determination of the magnetic field strength, coronal density scale height, density  
   structuring along and cross coronal loops, etc.

  Theory

  

  Observations

  Theory

EQUILIBRIUM PARAMETERS          OSCILLATIONS

   EQUILIBRIUM MODELS        EIGENMODES

(?)

  Observations

Inverse problem

Direct problem



Geoseismology
Earth’s interior, earhtquakes and 

related phenomena 

Helioseismology
The interior of the Sun

using sound-gravity waves

Magnetoseismology
Earth’s magnetospheric plasmas

Disk seismology
Accretion disks around compact 

objects
Neutron star seismology Tokamaks

Laboratory/Fusion plasmas

?

other seismology techniques
asteroseismology



Confronting observations and theory to infer physical parameters is not an easy task

Forward problem

Seismology involves the solution of two different problems

Inverse problem

Cause Consequences

Theoretical models 
and parameters

Theoretical 
wave properties

Consequences Cause

Observed 
wave properties

Unknown physical 
conditions/processes

We use the rules of probability to make scientific inference and quantify uncertainty

Under conditions in which information is incomplete and uncertain

From classic to Bayesian techniques



What is probability: Probability quantifies randomness and uncertainty

What is statistics: Statistics uses probability to make scientific inferences

Use of probability:  There are two main schools / lines of thought / religions

A one-slide introduction to probability

The Bayesian framework defines rigorous tools to perform inference and model 
comparison by looking at how data constrain parameters/models

Frequentists Bayesians

Interpretation     
of probability

Long-run relative frequency in 
the limit of infinite repetitions  

Measure of degree to which a
given proposition is supported by 

data

Focus on
Alternative data: 

compare probs. of different   
data realizations

Alternative hypotheses: 
compare probs. of different 
hypotheses in view of data

 Useful for Counting
Characterizing data Inference and model comparison

They calculate probabilities of different things!

Astrophysics observational science > data are fixed!

Measure frequencies Measure informed belief



We cannot state that something is true/false in the solar atmosphere

We just try to quantify what to believe

And accept that as the best we can do



Bayesian Data Analysis

State of knowledge is a combination of what is known a priori independently of 
data and the likelihood of obtaining a data realisation actually observed as a 

function of the parameter vector

Posterior

Likelihood function

Prior
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Figure 1. (a) Posterior distributions for η, under the density stratification model, for two values of the period ratio. (b) Posterior distributions for the magnetic tube
expansion, Γ, under the magnetic expansion model, for two values of the period ratio. The measured period ratio and the inferred median of the distribution, with
uncertainties given at the 68% credible interval are (a) r = 0.91 ± 0.04, η = 1.26+0.65

−0.59; r = 0.79 ± 0.03, η = 3.39+0.72
−0.64 and (b) r = 1.07 ± 0.04, Γ = 1.20+0.10

−0.12;
r = 1.38±0.04, Γ = 1.87+0.07

−0.07. The improved errors on r in the measurements of Verwichte et al. (2004) have been taken from Van Doorsselaere et al. (2007). Similar
errors are assigned to the mean values in the measurements by De Moortel & Brady (2007).

Both longitudinal stratification and magnetic tube expansion
have forward models that relate one observed quantity, the
period ratio P1/2P2, to one physical quantity to be inferred,
η or Γ.

3. BAYESIAN PARAMETER INFERENCE

To perform the inference using existing estimates for the
period ratio, we employ Bayes’ theorem (Bayes & Price 1763)

p(θ |D,M) = p(D|θ ,M)p(θ |M)∫
dθp(D|θ ,M)p(θ |M)

, (3)

which gives the solution to the inverse problem in terms of
the posterior probability distribution, p(θ |D,M), that describes
how probability is distributed among the possible values of the
unknown parameter, θ , given the data D and the assumed model
M. The function p(D|θ,M) is the likelihood of obtaining a
data realization actually observed as a function of the parameter
vector and provides a measure of how well the data are predicted
by the model. The prior probability p(θ |M) encodes any prior
information we might have on the model parameters without
taking into account the observed data. The denominator is the
evidence, an integral of the likelihood over the prior distribution.
This quantity plays no role in parameter inference, but will
become central in the model comparison described in Section 4.

3.1. Longitudinally Stratified Loops

For longitudinally stratified loops, model M1, the forward
problem, is given in Equation (1). To evaluate the likelihood,
we assume that the model is true. Then, the period ratio mea-
surement (r) will differ from the prediction (r1) because of mea-
surement uncertainties (e), so that r = r1 ± e. The probability
of obtaining the measured value is equal to the probability of
the error. Assuming Gaussian errors, the likelihood for model
M1 is then expressed in the following manner

p(r|η,M1) = 1√
2πσ

exp
[
− (r − r1)2

2σ 2

]
, (4)

with σ 2 the variance associated to the observed period ratio.
In the following we assign observed period ratio errors to the
standard deviation σ .

The prior indicates our level of knowledge (ignorance) before
considering the observed data. We have adopted a uniform prior
distribution for the unknown, η, over a given range, so that we
can write

p(η|M1) = 1
ηmax − ηmin

for ηmin ! η ! ηmax, (5)

and zero otherwise. We only consider loops with density
decreasing with height. We know from observations that
very large coronal loops with the apex height above
several atmospheric scale heights exist, so we consider the range
η ∈ [0, 8] in the prior above.

Parameter inference is next performed using Bayes’
theorem (3). We use period ratio measurements reported in
observations by Verwichte et al. (2004). We must note that
unambiguous identification of measured periods with particular
overtones is a difficult task. Early observations were limited to
the measurement of different periodicities at a single point with-
out spatial information (Verwichte et al. 2004). Even in the case
in which information at different cuts along the loops is avail-
able (De Moortel & Brady 2007), it is unclear how one should
assign those periods to theoretical overtones. As our Letter
aims at providing a method to perform parameter inference
and model comparison, we have considered period ratio values
discussed in the review by Andries et al. (2009), noting that the
reliability of the results is closely related to that of the adopted
assumptions and theoretical interpretations.

Figure 1(a) shows posterior probability distributions for η
computed using Equation (3) with likelihood and prior given
by Equations (4) and (5) for two period ratio measurements
by Verwichte et al. (2004). Well constrained distributions are
obtained. For the measured period ratios r ∼ 0.79 and r ∼ 0.91,
the inversion leads to density scale heights of H = 21 Mm and
H = 56 Mm, respectively, for a loop with a height at the apex
of L/π = 70 Mm.

3.2. Expanding Magnetic Loops

For expanding loops, model M2, the forward problem is given
in Equation (2). To evaluate the likelihood, we follow the same
procedure as above, which leads to

p(r|Γ,M2) = 1√
2πσ

exp
[
− (r − r2)2

2σ 2

]
. (6)

2

Parameter Inference Model Comparison

Compute posterior for different 
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Marginalise
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the full posterior with respect to the rest of parameters

p(✓i|d) =
Z

p(✓|d)d✓1 . . . d✓i�1d✓i+1 . . . d✓N . (6)

The result provides us with all the information for model parameter ✓i available in the priors
and the data. This method also enables us to correctly propagate uncertainties from data to
inferred parameters.

We next specify the likelihood function and the priors. In what follows we assume the
observed data are given by d = (Lg, h), where both observed length-scales are normalized to
the wavelength. The unknowns are gathered in the vector ✓=(⇣, l/R). Under the assumption
that observations are corrupted with Gaussian noise and they are statistically independent, the
likelihood can be expressed as

p(d|✓) =
⇣
2⇡�Lg�h

⌘�1
exp
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2�2
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, (7)

with Lsyn
g (✓) and hsyn(✓) given by Equations (3) and (4). Likewise, �2

Lg
and �2

h are the variances
associated to the Gaussian damping length and the height h, respectively.

The priors indicate our level of knowledge (ignorance) before considering the observed data.
We have adopted uniform prior distributions for both unknowns over given ranges, so that we can
write

p(✓i) =
1

✓max
i � ✓min

i

for ✓min
i  ✓  ✓max

i , (8)

and zero otherwise. For the minimum and maximum values the intervals ⇣ 2 [1, 20] and l/R 2
[0, 2] have been taken. This choice of priors expresses our belief that the unknown parameters are
constrained to those ranges, with all combinations being equally probable. We have verified that
our posteriors are insensitive to prior changes. This means that they are dominated by the
information contained in the data, that overwhelms the prior information.

The posterior is evaluated for di↵erent combinations of parameters using Bayes’ theorem.
Given that the number of model parameters is two, the computation of the marginal posteriors
using Eq. (6) can be safely done using a numerical quadrature. For this purpose, we have computed
the 1-dimensional integrals using an adaptive Gauss-Kronrod quadrature, which gives very good
precision.

Compare one model 
against other 
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Figure 1. (a) Posterior distributions for η, under the density stratification model, for two values of the period ratio. (b) Posterior distributions for the magnetic tube
expansion, Γ, under the magnetic expansion model, for two values of the period ratio. The measured period ratio and the inferred median of the distribution, with
uncertainties given at the 68% credible interval are (a) r = 0.91 ± 0.04, η = 1.26+0.65

−0.59; r = 0.79 ± 0.03, η = 3.39+0.72
−0.64 and (b) r = 1.07 ± 0.04, Γ = 1.20+0.10

−0.12;
r = 1.38±0.04, Γ = 1.87+0.07

−0.07. The improved errors on r in the measurements of Verwichte et al. (2004) have been taken from Van Doorsselaere et al. (2007). Similar
errors are assigned to the mean values in the measurements by De Moortel & Brady (2007).

Both longitudinal stratification and magnetic tube expansion
have forward models that relate one observed quantity, the
period ratio P1/2P2, to one physical quantity to be inferred,
η or Γ.

3. BAYESIAN PARAMETER INFERENCE

To perform the inference using existing estimates for the
period ratio, we employ Bayes’ theorem (Bayes & Price 1763)

p(θ |D,M) = p(D|θ ,M)p(θ |M)∫
dθp(D|θ ,M)p(θ |M)

, (3)

which gives the solution to the inverse problem in terms of
the posterior probability distribution, p(θ |D,M), that describes
how probability is distributed among the possible values of the
unknown parameter, θ , given the data D and the assumed model
M. The function p(D|θ,M) is the likelihood of obtaining a
data realization actually observed as a function of the parameter
vector and provides a measure of how well the data are predicted
by the model. The prior probability p(θ |M) encodes any prior
information we might have on the model parameters without
taking into account the observed data. The denominator is the
evidence, an integral of the likelihood over the prior distribution.
This quantity plays no role in parameter inference, but will
become central in the model comparison described in Section 4.

3.1. Longitudinally Stratified Loops

For longitudinally stratified loops, model M1, the forward
problem, is given in Equation (1). To evaluate the likelihood,
we assume that the model is true. Then, the period ratio mea-
surement (r) will differ from the prediction (r1) because of mea-
surement uncertainties (e), so that r = r1 ± e. The probability
of obtaining the measured value is equal to the probability of
the error. Assuming Gaussian errors, the likelihood for model
M1 is then expressed in the following manner

p(r|η,M1) = 1√
2πσ

exp
[
− (r − r1)2

2σ 2

]
, (4)

with σ 2 the variance associated to the observed period ratio.
In the following we assign observed period ratio errors to the
standard deviation σ .

The prior indicates our level of knowledge (ignorance) before
considering the observed data. We have adopted a uniform prior
distribution for the unknown, η, over a given range, so that we
can write

p(η|M1) = 1
ηmax − ηmin

for ηmin ! η ! ηmax, (5)

and zero otherwise. We only consider loops with density
decreasing with height. We know from observations that
very large coronal loops with the apex height above
several atmospheric scale heights exist, so we consider the range
η ∈ [0, 8] in the prior above.

Parameter inference is next performed using Bayes’
theorem (3). We use period ratio measurements reported in
observations by Verwichte et al. (2004). We must note that
unambiguous identification of measured periods with particular
overtones is a difficult task. Early observations were limited to
the measurement of different periodicities at a single point with-
out spatial information (Verwichte et al. 2004). Even in the case
in which information at different cuts along the loops is avail-
able (De Moortel & Brady 2007), it is unclear how one should
assign those periods to theoretical overtones. As our Letter
aims at providing a method to perform parameter inference
and model comparison, we have considered period ratio values
discussed in the review by Andries et al. (2009), noting that the
reliability of the results is closely related to that of the adopted
assumptions and theoretical interpretations.

Figure 1(a) shows posterior probability distributions for η
computed using Equation (3) with likelihood and prior given
by Equations (4) and (5) for two period ratio measurements
by Verwichte et al. (2004). Well constrained distributions are
obtained. For the measured period ratios r ∼ 0.79 and r ∼ 0.91,
the inversion leads to density scale heights of H = 21 Mm and
H = 56 Mm, respectively, for a loop with a height at the apex
of L/π = 70 Mm.

3.2. Expanding Magnetic Loops

For expanding loops, model M2, the forward problem is given
in Equation (2). To evaluate the likelihood, we follow the same
procedure as above, which leads to
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Figure 1. (a) Posterior distributions for η, under the density stratification model, for two values of the period ratio. (b) Posterior distributions for the magnetic tube
expansion, Γ, under the magnetic expansion model, for two values of the period ratio. The measured period ratio and the inferred median of the distribution, with
uncertainties given at the 68% credible interval are (a) r = 0.91 ± 0.04, η = 1.26+0.65

−0.59; r = 0.79 ± 0.03, η = 3.39+0.72
−0.64 and (b) r = 1.07 ± 0.04, Γ = 1.20+0.10

−0.12;
r = 1.38±0.04, Γ = 1.87+0.07

−0.07. The improved errors on r in the measurements of Verwichte et al. (2004) have been taken from Van Doorsselaere et al. (2007). Similar
errors are assigned to the mean values in the measurements by De Moortel & Brady (2007).

Both longitudinal stratification and magnetic tube expansion
have forward models that relate one observed quantity, the
period ratio P1/2P2, to one physical quantity to be inferred,
η or Γ.

3. BAYESIAN PARAMETER INFERENCE

To perform the inference using existing estimates for the
period ratio, we employ Bayes’ theorem (Bayes & Price 1763)

p(θ |D,M) = p(D|θ ,M)p(θ |M)∫
dθp(D|θ ,M)p(θ |M)

, (3)

which gives the solution to the inverse problem in terms of
the posterior probability distribution, p(θ |D,M), that describes
how probability is distributed among the possible values of the
unknown parameter, θ , given the data D and the assumed model
M. The function p(D|θ,M) is the likelihood of obtaining a
data realization actually observed as a function of the parameter
vector and provides a measure of how well the data are predicted
by the model. The prior probability p(θ |M) encodes any prior
information we might have on the model parameters without
taking into account the observed data. The denominator is the
evidence, an integral of the likelihood over the prior distribution.
This quantity plays no role in parameter inference, but will
become central in the model comparison described in Section 4.

3.1. Longitudinally Stratified Loops

For longitudinally stratified loops, model M1, the forward
problem, is given in Equation (1). To evaluate the likelihood,
we assume that the model is true. Then, the period ratio mea-
surement (r) will differ from the prediction (r1) because of mea-
surement uncertainties (e), so that r = r1 ± e. The probability
of obtaining the measured value is equal to the probability of
the error. Assuming Gaussian errors, the likelihood for model
M1 is then expressed in the following manner

p(r|η,M1) = 1√
2πσ

exp
[
− (r − r1)2

2σ 2

]
, (4)

with σ 2 the variance associated to the observed period ratio.
In the following we assign observed period ratio errors to the
standard deviation σ .

The prior indicates our level of knowledge (ignorance) before
considering the observed data. We have adopted a uniform prior
distribution for the unknown, η, over a given range, so that we
can write

p(η|M1) = 1
ηmax − ηmin

for ηmin ! η ! ηmax, (5)

and zero otherwise. We only consider loops with density
decreasing with height. We know from observations that
very large coronal loops with the apex height above
several atmospheric scale heights exist, so we consider the range
η ∈ [0, 8] in the prior above.

Parameter inference is next performed using Bayes’
theorem (3). We use period ratio measurements reported in
observations by Verwichte et al. (2004). We must note that
unambiguous identification of measured periods with particular
overtones is a difficult task. Early observations were limited to
the measurement of different periodicities at a single point with-
out spatial information (Verwichte et al. 2004). Even in the case
in which information at different cuts along the loops is avail-
able (De Moortel & Brady 2007), it is unclear how one should
assign those periods to theoretical overtones. As our Letter
aims at providing a method to perform parameter inference
and model comparison, we have considered period ratio values
discussed in the review by Andries et al. (2009), noting that the
reliability of the results is closely related to that of the adopted
assumptions and theoretical interpretations.

Figure 1(a) shows posterior probability distributions for η
computed using Equation (3) with likelihood and prior given
by Equations (4) and (5) for two period ratio measurements
by Verwichte et al. (2004). Well constrained distributions are
obtained. For the measured period ratios r ∼ 0.79 and r ∼ 0.91,
the inversion leads to density scale heights of H = 21 Mm and
H = 56 Mm, respectively, for a loop with a height at the apex
of L/π = 70 Mm.

3.2. Expanding Magnetic Loops

For expanding loops, model M2, the forward problem is given
in Equation (2). To evaluate the likelihood, we follow the same
procedure as above, which leads to

p(r|Γ,M2) = 1√
2πσ

exp
[
− (r − r2)2

2σ 2

]
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Figure 1. (a) Posterior distributions for η, under the density stratification model, for two values of the period ratio. (b) Posterior distributions for the magnetic tube
expansion, Γ, under the magnetic expansion model, for two values of the period ratio. The measured period ratio and the inferred median of the distribution, with
uncertainties given at the 68% credible interval are (a) r = 0.91 ± 0.04, η = 1.26+0.65

−0.59; r = 0.79 ± 0.03, η = 3.39+0.72
−0.64 and (b) r = 1.07 ± 0.04, Γ = 1.20+0.10

−0.12;
r = 1.38±0.04, Γ = 1.87+0.07

−0.07. The improved errors on r in the measurements of Verwichte et al. (2004) have been taken from Van Doorsselaere et al. (2007). Similar
errors are assigned to the mean values in the measurements by De Moortel & Brady (2007).

Both longitudinal stratification and magnetic tube expansion
have forward models that relate one observed quantity, the
period ratio P1/2P2, to one physical quantity to be inferred,
η or Γ.

3. BAYESIAN PARAMETER INFERENCE

To perform the inference using existing estimates for the
period ratio, we employ Bayes’ theorem (Bayes & Price 1763)

p(θ |D,M) = p(D|θ ,M)p(θ |M)∫
dθp(D|θ ,M)p(θ |M)

, (3)

which gives the solution to the inverse problem in terms of
the posterior probability distribution, p(θ |D,M), that describes
how probability is distributed among the possible values of the
unknown parameter, θ , given the data D and the assumed model
M. The function p(D|θ,M) is the likelihood of obtaining a
data realization actually observed as a function of the parameter
vector and provides a measure of how well the data are predicted
by the model. The prior probability p(θ |M) encodes any prior
information we might have on the model parameters without
taking into account the observed data. The denominator is the
evidence, an integral of the likelihood over the prior distribution.
This quantity plays no role in parameter inference, but will
become central in the model comparison described in Section 4.

3.1. Longitudinally Stratified Loops

For longitudinally stratified loops, model M1, the forward
problem, is given in Equation (1). To evaluate the likelihood,
we assume that the model is true. Then, the period ratio mea-
surement (r) will differ from the prediction (r1) because of mea-
surement uncertainties (e), so that r = r1 ± e. The probability
of obtaining the measured value is equal to the probability of
the error. Assuming Gaussian errors, the likelihood for model
M1 is then expressed in the following manner

p(r|η,M1) = 1√
2πσ

exp
[
− (r − r1)2

2σ 2

]
, (4)

with σ 2 the variance associated to the observed period ratio.
In the following we assign observed period ratio errors to the
standard deviation σ .

The prior indicates our level of knowledge (ignorance) before
considering the observed data. We have adopted a uniform prior
distribution for the unknown, η, over a given range, so that we
can write

p(η|M1) = 1
ηmax − ηmin

for ηmin ! η ! ηmax, (5)

and zero otherwise. We only consider loops with density
decreasing with height. We know from observations that
very large coronal loops with the apex height above
several atmospheric scale heights exist, so we consider the range
η ∈ [0, 8] in the prior above.

Parameter inference is next performed using Bayes’
theorem (3). We use period ratio measurements reported in
observations by Verwichte et al. (2004). We must note that
unambiguous identification of measured periods with particular
overtones is a difficult task. Early observations were limited to
the measurement of different periodicities at a single point with-
out spatial information (Verwichte et al. 2004). Even in the case
in which information at different cuts along the loops is avail-
able (De Moortel & Brady 2007), it is unclear how one should
assign those periods to theoretical overtones. As our Letter
aims at providing a method to perform parameter inference
and model comparison, we have considered period ratio values
discussed in the review by Andries et al. (2009), noting that the
reliability of the results is closely related to that of the adopted
assumptions and theoretical interpretations.

Figure 1(a) shows posterior probability distributions for η
computed using Equation (3) with likelihood and prior given
by Equations (4) and (5) for two period ratio measurements
by Verwichte et al. (2004). Well constrained distributions are
obtained. For the measured period ratios r ∼ 0.79 and r ∼ 0.91,
the inversion leads to density scale heights of H = 21 Mm and
H = 56 Mm, respectively, for a loop with a height at the apex
of L/π = 70 Mm.

3.2. Expanding Magnetic Loops

For expanding loops, model M2, the forward problem is given
in Equation (2). To evaluate the likelihood, we follow the same
procedure as above, which leads to
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Figure 1. (a) Posterior distributions for η, under the density stratification model, for two values of the period ratio. (b) Posterior distributions for the magnetic tube
expansion, Γ, under the magnetic expansion model, for two values of the period ratio. The measured period ratio and the inferred median of the distribution, with
uncertainties given at the 68% credible interval are (a) r = 0.91 ± 0.04, η = 1.26+0.65
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r = 1.38±0.04, Γ = 1.87+0.07

−0.07. The improved errors on r in the measurements of Verwichte et al. (2004) have been taken from Van Doorsselaere et al. (2007). Similar
errors are assigned to the mean values in the measurements by De Moortel & Brady (2007).

Both longitudinal stratification and magnetic tube expansion
have forward models that relate one observed quantity, the
period ratio P1/2P2, to one physical quantity to be inferred,
η or Γ.

3. BAYESIAN PARAMETER INFERENCE

To perform the inference using existing estimates for the
period ratio, we employ Bayes’ theorem (Bayes & Price 1763)

p(θ |D,M) = p(D|θ ,M)p(θ |M)∫
dθp(D|θ ,M)p(θ |M)

, (3)

which gives the solution to the inverse problem in terms of
the posterior probability distribution, p(θ |D,M), that describes
how probability is distributed among the possible values of the
unknown parameter, θ , given the data D and the assumed model
M. The function p(D|θ,M) is the likelihood of obtaining a
data realization actually observed as a function of the parameter
vector and provides a measure of how well the data are predicted
by the model. The prior probability p(θ |M) encodes any prior
information we might have on the model parameters without
taking into account the observed data. The denominator is the
evidence, an integral of the likelihood over the prior distribution.
This quantity plays no role in parameter inference, but will
become central in the model comparison described in Section 4.

3.1. Longitudinally Stratified Loops

For longitudinally stratified loops, model M1, the forward
problem, is given in Equation (1). To evaluate the likelihood,
we assume that the model is true. Then, the period ratio mea-
surement (r) will differ from the prediction (r1) because of mea-
surement uncertainties (e), so that r = r1 ± e. The probability
of obtaining the measured value is equal to the probability of
the error. Assuming Gaussian errors, the likelihood for model
M1 is then expressed in the following manner

p(r|η,M1) = 1√
2πσ

exp
[
− (r − r1)2
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]
, (4)

with σ 2 the variance associated to the observed period ratio.
In the following we assign observed period ratio errors to the
standard deviation σ .

The prior indicates our level of knowledge (ignorance) before
considering the observed data. We have adopted a uniform prior
distribution for the unknown, η, over a given range, so that we
can write

p(η|M1) = 1
ηmax − ηmin

for ηmin ! η ! ηmax, (5)

and zero otherwise. We only consider loops with density
decreasing with height. We know from observations that
very large coronal loops with the apex height above
several atmospheric scale heights exist, so we consider the range
η ∈ [0, 8] in the prior above.

Parameter inference is next performed using Bayes’
theorem (3). We use period ratio measurements reported in
observations by Verwichte et al. (2004). We must note that
unambiguous identification of measured periods with particular
overtones is a difficult task. Early observations were limited to
the measurement of different periodicities at a single point with-
out spatial information (Verwichte et al. 2004). Even in the case
in which information at different cuts along the loops is avail-
able (De Moortel & Brady 2007), it is unclear how one should
assign those periods to theoretical overtones. As our Letter
aims at providing a method to perform parameter inference
and model comparison, we have considered period ratio values
discussed in the review by Andries et al. (2009), noting that the
reliability of the results is closely related to that of the adopted
assumptions and theoretical interpretations.

Figure 1(a) shows posterior probability distributions for η
computed using Equation (3) with likelihood and prior given
by Equations (4) and (5) for two period ratio measurements
by Verwichte et al. (2004). Well constrained distributions are
obtained. For the measured period ratios r ∼ 0.79 and r ∼ 0.91,
the inversion leads to density scale heights of H = 21 Mm and
H = 56 Mm, respectively, for a loop with a height at the apex
of L/π = 70 Mm.

3.2. Expanding Magnetic Loops

For expanding loops, model M2, the forward problem is given
in Equation (2). To evaluate the likelihood, we follow the same
procedure as above, which leads to

p(r|Γ,M2) = 1√
2πσ

exp
[
− (r − r2)2

2σ 2

]
. (6)

2

Evidence

– 6 –

To determine the plausibility of models M1 and M2 between them and with respect to model
M0, we evaluate the posterior probabilities to ascertain the relative merits of two models, Mi and
Mj. This is done by applying Bayes’ theorem (Eq. ??) to the two models and considering
posterior ratios of the form (?)

p(Mi|d)
p(Mj|d)

=
p(d|Mi)
p(d|Mj)

p(Mi)
p(Mj)

. (9)

The first ratio on the right-hand side is the Bayes factor. It expresses how well the observed
data are predicted by model Mi, compared to model Mj. The second ratio, the prior odds ratio,
measures how much our initial beliefs favored Mi over Mj, before considering the data. As we
have no particular a priori preference for one model over the other, before considering the data,
we take p(Mi) = p(Mj) = 1/2. Our assessment of the plausibility of models is then based on the
computation of the Bayes factor of Mi against Mj given by

BFi j =
p(r|Mi)
p(r|Mj)

. (10)

In model selection, we are interested in the most probable model, independently of the param-
eters, i.e., we should marginalise out all parameters. This is achieved by performing an integral of
the likelihood over the full parameter space. The marginal likelihood for a given model Mi is then

p(r|Mi) =
Z ✓max

✓min
p(r, ✓|Mi)d✓ =

Z ✓max

✓min
p(r|✓,Mi)p(✓|Mi)d✓, (11)

where ✓ 2 [✓min, ✓max] represents the particular parameter of the model and we have used the
product rule to expand the probability of r and ✓, given model Mi.

Figure ??a displays the marginal likelihoods for the three considered models. For a given
observed period ratio, the plausibility of one model over the other is given by the ratio of these
two quantities at the measured period ratio r. The uniform model has a marginal likelihood that
is maximum at one. The model with density stratification is clearly favored for observations of
period ratios below unity. Figure ??b quantifies the relative performance of models M1 and M0

by computing the Bayes factor. The lower r, the more plausible M1 is against M0. Je↵reys’ scale
(??) assigns di↵erent levels of evidence to the values of the Bayes factor in natural logarithm units.
They are shown using di↵erent darkening options in Figures ??b-d. According to Figure ??b, and
given the assumed uncertainty of � = 0.08, a period ratio measurement should be considered as
positive evidence for model M1 against model M0 only if it is below 0.87. As strong evidence, only
if it is below 0.78. A period ratio below 0.71 indicates very strong evidence for model M1.

A similar comparison was made for models M2 and M0 (Figure ??c). The model for magnetic
tube expansion is clearly favored for observations of period ratios above unity. Model M0 cannot

Bayes’ Rule (Bayes & Price 1763)

Probabilistic Inference considers the inversion problem as the task of estimating 
the degree of belief in statements about parameter values/model evidence 

Model Averaging

Posterior ratios

Posteriors weighted with 
model evidence

Weighted posterior

p(✓|d) =
NX

i=1

p(✓|d,Mi)p(Mi|d)



List of Applications and Methodologies

Inference of physical parameters in coronal waveguides from observed damped 
transverse oscillations

Markov Chain Monte Carlo sampling of the posterior

Computation of marginal posteriors from integrals

Computation of marginal likelihood to assess model plausibility

Computation of Bayes factors to assess relative model plausibility

Computation of weighted posterior to perform model averaging

Inference of coronal density scale height and coronal magnetic expansion and 
comparison between stratified and magnetically non-uniform models

Model comparison for the density structure along and across coronal waveguides

APPLICATIONS

METHODS

Inference of cross-field density structure from damped transverse oscillations 
oscillations



Example #1

Inference of coronal loop parameters from 
observations of transverse oscillations



Aschwanden et al. (1999); Nakariakov et al. (1999); Aschwanden et al. (2002); 
Schrijver et al. (2002), Verwichte et al. (2004) ... White & Verwichte (2012) 

   Periods ~ 2-11 mins

   Damping times ~ 3-21 mins

• Transverse standing MHD kink mode of a magnetic 
flux tube - lateral displacement of the tube 
(Nakariakov99)- Multiple harmonics (Verwichte04)

• Resonant damping - coupling of global motion to 
local Alfvén waves (Hollweg & Yang88; Goossens02) 

Verwichte et al. (2004)

Nakariakov et al. (1999)

Coronal loop oscillations



Forward problem

3 parameters
                          

 2 observables

• Observed periods and damping times can be 
   reproduced by infinite number of models

• But they must follow a particular 1D solution 
   space (Arregui et al. 2007)

Classic inversion - 1D density enhancements

Inverse problem

• Thin tube approximation for the 
period (Edwin & Roberts 1983) 

• Thin boundary approximation 
for the damping (Goossens et al. 
1992; Ruderman & Roberts 
2002)
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Inversion in coronal loops 

Alfvén speed constrained to a narrow range

Excellent analytic/numerical agreement

• No assumption on particular 
values for parameters

• General solution from which 
limiting cases can be studied

• Infinite number of equally 
valid solutions

• No clear way to propagate 
errors from observations to 
inferred quantities

Limitations

Advantages

Analytic/numerical inversion schemes 
Arregui et al. (2007); Goossens, Arregui, Ballester, Wang (2008)



Synthetic data from 
forward problem

Bayesian inversion                        
Arregui & Asensio Ramos (2011, ApJ 740 44)

Prior information

Likelihood function

Variances associated to 
period and damping time

Density contrast: 
3 different options 

Inhomogeneity length-scale: 
Uniform in range 0-2

Alfvén travel time: 
Uniform in range determined by period

p(d|✓) = (2⇡�P�⌧ )
�1

exp
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[P � P syn

(✓)]2

2�2
P

+
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Optimal results are obtained with 
density information 

Suppose we have some information on densities

Prior information

Density contrast:  
Gaussian centered 
in 

Inhomogeneity   
Uniform in

Alfvén travel time   
Uniform in

Arregui & Asensio Ramos (2011)

Data is able to  
constrain the problem

⇣ = 5 �⇣ = 0.1⇣

l/R 2 [0� 2]

⌧Ai 2 [1� 400]

P = 232 s ⌧d/P = 3.8



Marginal posteriors
All parameters of interest fully constrained when info on density inserted



Application to 11 loop oscillation events

– 21 –

Table 2. Analytic (A) and Bayesian (B) inversion results for the analyzed loop oscillation events.

Oscillation properties Inversion results

Analytic Bayesian Je�reys Bayesian Gaussian

# P (s) ⇥d (s) P/⇥d ⇥Ai (s) ⇥Ai (s) l/R ⇥Ai (s) l/R �

1 261 870 0.30 145–177 161.5+22.2
�19.7 0.36+0.27

�0.13 169.4+17.4
�16.9 0.30+0.05

�0.04 4.99+0.50
�0.50

2 265 300 0.88 163–182 169.9+20.9
�21.4 0.92+0.47

�0.25 167.1+17.4
�16.9 1.01+0.19

�0.16 3.76+0.64
�0.61

3 316 500 0.63 189–217 199.4+25.0
�24.5 0.76+0.61

�0.28 196.8+17.4
�16.9 0.77+0.43

�0.19 3.53+1.88
�1.42

4 277 400 0.69 168–189 176.2+22.7
�22.7 0.73+0.53

�0.22 167.2+17.4
�16.9 1.05+0.43

�0.28 2.56+0.98
�0.69

5 272 849 0.32 151–187 173.2+21.1
�22.4 0.34+0.26

�0.11 159.7+17.4
�16.9 0.58+0.47

�0.17 2.18+0.75
�0.62

6 522 1200 0.44 304–359 329.7+43.08
�43.8 0.49+0.39

�0.16 319.9+17.4
�16.9 0.59+0.25

�0.13 2.97+0.94
�0.91

7 435 600 0.73 267–299 281.3+33.1
�35.4 0.74+0.41

�0.20 290.9+17.4
�16.9 0.64+0.11

�0.09 6.98+1.0
�1.0

8 143 200 0.72 90–98 90.9+12.0
�11.4 0.76+0.53

�0.23 93.8+17.4
�16.9 0.69+0.11

�0.10 5.55+0.94
�0.96

9 423 800 0.53 247–291 265.6+35.2
�33.0 0.64+0.68

�0.25 290.5+17.4
�16.9 0.41+0.07

�0.06 13.4+3.5
�3.8

10 185 200 0.93 117–126 119.2+14.8
�14.8 0.94+0.48

�0.26 114.4+17.4
�16.9 1.21+0.24

�0.20 3.08+0.43
�0.44

11 390 400 0.98 245–270 250.5+29.6
�22.7 0.99+0.54

�0.28 221.5+17.4
�16.9 1.69+0.17

�0.25 2.10+0.29
�0.23

Inversions with Gaussian prior use contrast estimates by Aschwanden et al. (2003)

Inversion with 
information on density



Example #2

21

Inference of cross-field density structuring 
from observations with multiple damping 

regimes in propagating coronal waves



Coronal waves
Tomczyk et al. (2007); Tomczyk & McIntosh (2009) 

J. Terradas et al.: Spatial damping of propagating kink waves

Fig. 2. Damping length normalised to the loop radius as a function of
the dimensionless frequency ( f = ωR/vAi) for three different widths of
the inhomogeneous layers. The solid line corresponds to the analytical
results, the dashed line represents the full numerical solution of the re-
sistive eigenvalue problem, and the dotted line corresponds to the TT
approximation calculated using Eq. (24), valid when f → 0. In this plot
ρi/ρe = 3.

5. Resistive calculations

The results based on TB approximation described in the pre-
vious sections are compared with the full resistive calculations
using the same cylindrical tube model. The same approach as
in Terradas et al. (2006) is used: i.e., the linearised MHD equa-
tions including magnetic diffusion are numerically solved using
finite elements. This method allows us to calculate the complex
eigenfrequencies of the quasimodes, which are independent of
the value of the resistivity in the limit of large resistivity (see
Poedts & Kerner 1991).

The comparison with the analytical results is useful since
there are no implicit assumptions about the TT or TB approxi-
mation in the resistive eigenvalue problem; i.e., the TT and TB
approximations are not used. The resistive calculation applies to
any frequency, whether it is small compared to vAi/R or not, and
also to equilibrium models that have a thin non-uniform layer or
are fully non-uniform. We have solved the eigenvalue problem
(for ω) and have used Eq. (40) to translate from temporal damp-
ing to spatial damping. By including resistivity, the eigenvalue
problem for the wavenumber is more difficult to solve than the
eigenvalue problem for the frequency. The results of the resistive
calculations are shown in Figs. 1 and 2 where the damping per
wavelength and the damping length are plotted as a function of
the frequency of the driver. The agreement between the resistive
computations and the analytical or semi-analytical methods is
very good. The small differences are the result of assuming that
the resonance is always located at r = R in the analytical approx-
imations, and we have calculated the derivative of the density at
this position. This explains the small deviations from the resis-
tive estimations. A more precise determination could be done by
calculating the exact location of the resonance and then using a
slightly modified version of Eq. (28), but since the analytical ap-
proximations that we have already derived are quite satisfactory,
there is no pressing need to explore this further.

6. Conclusions and discussion

The spatial damping due to resonant absorption of driven kink
waves has been investigated. The main conclusion of the work

is that the damping length of propagating kink waves due to res-
onant absorption is a monotonically decreasing function of fre-
quency. The TGV relation for kink waves was derived, demon-
strating that for low frequencies the damping length is exactly
inversely proportional to frequency. In the high-frequency range
the TGV relation continues to be an excellent approximation
of the actual dependency of the damping length on frequency.
Certainly, for all physically relevant frequencies the dependency
of damping length on frequency is accurately described by the
TGV relation. This dependency means that resonant absorption
is selective as it favours low-frequency waves and can efficiently
remove high-frequency waves from a broad band spectrum of
kink waves. This has high significance for solar atmospheric
kink waves, since high-frequency waves will tend to lose more
power than their low-frequency counterparts before reaching
high altitudes in the solar corona, with the exact percentage
power loss depending on the properties of the equilibrium, in
particular the width of the non-uniform layer and steepness of
the variation in the local Alfvén speed. With respect to mode
conversion, the process of resonant absorption will cause the
higher frequency waves to be attenuated more because the global
kink mode will be converted into localised Alfvénic modes at
lower heights. If the energy of these Alfvénic motions is eventu-
ally dissipated, then resonant absorption should produce a char-
acteristic distribution of the energy as a function of height in
the solar atmosphere. This could have important consequences
with for the spatial distribution of wave heating in the solar
atmosphere.

It has also been shown that spatial and temporal damping are
basically equivalent. In the TT approximation, the damping per
period and the damping per wavelength are exactly the same.
The differences in these two quantities arise in the regime where
the TT is not valid, but even in this situation it is easy to relate
the spatial and the temporal damping rates through the group and
phase speeds of the kink MHD waves. This allows us to trans-
late the results from the temporally damped waves (ω complex,
k real) to spatially attenuated waves (ω real, k complex) due to
resonant absorption. This mechanism requires the frequency of
the driver to be between the internal and the external Alfvén fre-
quency of the tube. This might seem a very restrictive condition,
but in fact it is just the opposite. In the driven problem, the fre-
quency is fixed but the system chooses the proper wavelength
(along the waveguide) to accommodate the kink mode in the
tube. This kink mode generated at the base of the loop propa-
gates upwards along the tube and at the same time is attenuated
by the inhomogeneity at the tube boundary.

An interesting result is that both the damping length in the
spatial problem and the damping time in the temporal problem
are always smaller than in the TT approximation (when f → 0),
meaning that waves with short wavelengths or high frequencies
are always more efficiently damped. The observations of stand-
ing kink waves observed with TRACE and for the propagating
kink waves detected with the CoMP instrument are precisely in
the regime where the TT is applicable, i.e., where the waves are
less affected by resonant absorption. That overtones of standing
kink waves and high-frequency propagating waves have proved
difficult to detect may be a direct consequence of the filtering by
resonant absorption. From a different perspective, we have also
shown that the damping per wavelength (and the damping per
period) has a weak dependence on the frequency.

It is necessary to point out that our results are based on a
simple magnetic flux tube model, i.e., a straight cylinder, with
no gravity and pressure. Curvature might produce some damping
due to wave leakage and external resonances, while stratification
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Selective spatial damping

Different inward/outward power
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Figure 2. Power ratio against frequency best fit using Equation (7) with CoMP
data. Fixed parameters are vph = 0.6 Mm s−1 and L = 250 Mm. Best-estimated
parameters are Pout/Pin = 0.91 and ξE = 2.69 (solid line). The 95% confidence
intervals for the simultaneous functional bounds are shown by the dashed lines.
Note that in the CoMP data S/N decreases with increasing frequency.

and for the inward power is

⟨P (f )⟩in = 1
L

∫ 2L

L

Pin(f ) exp
(

− 2f

vphξE
s

)
ds. (6)

Note that for Equation (6) integrating the power in the gray
region from s = L to s = 0 for the inward wave is equivalent
to integrating from s = L to s = 2L for the outward wave.
Defining ⟨P (f )⟩ratio = ⟨P (f )⟩out / ⟨P (f )⟩in, it can be shown by
Equations (5) and (6) that

⟨P (f )⟩ratio = Pout(f )
Pin(f )

exp
(

2L

vphξE
f

)
. (7)

In the next section, we shall do an exponential least squares
fit using Equation (7) with CoMP data from the same obser-
vation by Tomczyk & McIntosh (2009) in the frequency range
0–4 mHz, where the S/N is strongest.

4. LEAST SQUARES FIT TO DATA

In Figure 2, it can be seen that the CoMP data (see triangles)
show a clear trend of ⟨P (f )⟩ratio increasing with frequency f;
i.e., higher frequency waves are damped more than their low
frequency counterparts. We add the caveat that in the CoMP
data this trend continues to about 8 mHz, then there is a
turnover in the ratio ⟨P (f )⟩ratio. At the present time, it is unclear
if this is simply due to background noise or is the result of
some other physical mechanism(s). Understanding this high
frequency trend should be the focus of a future study. However,
there is a strong level of confidence in the trend of ⟨P (f )⟩ratio
in the range 0–4 mHz, which can be explained by the theory
of propagating kink wave resonant damping. To illustrate this,
we implement a least squares fit of the power ratio function
given in Equation (7) to the CoMP data in this range. From the
estimates of Tomczyk & McIntosh (2009), our fixed parameters
are vph = 0.6 Mm s−1 and path length L = 250 Mm for
both outward and inward waves, leaving the free parameters as
Pout/Pin and ξE. It is found that the best estimates are Pout/Pin =
0.91 and ξE = 2.69 (see solid line in Figure 2) with 95%
confidence bounds Pout/Pin = 0.67–1.89 and ξE = 1.15–3.49.
Although the wave paths analyzed by Tomczyk & McIntosh
(2009) are integrated over many coronal loop structures, the
spatially averaged estimate of ξE is consistent with the damped
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Figure 3. Percentage power loss against frequency of a kink wave after one
travel time between the two loop footpoints s = 0 and s = 2L, and a distance
of 500 Mm. The dashed lines indicate the percentage power loss up to the 95%
confidence bounds of estimated parameter ξE.

standing kink waves in individual coronal loops observed by
TRACE where ξE ≈ 1–4 (Aschwanden et al. 2003). It is
interesting to note that the average half-length of loops estimated
with TRACE data is about L = 110 Mm due to its restricted
field of view. The longer value of L = 250 Mm observed
with CoMP suggests that the rate of damping is independent
of loop length; i.e., long loops have similar transverse length
scale density inhomogeneities as short loops. This has also
been independently confirmed recently by Verwichte et al.
(2010) in the study of a long loop of L = 345 Mm using
combined Solar and Heliospheric Observatory, TRACE, and
Solar Terrestrial Relations Observatory observations, where
they found ξE = 1.48 for a post-coronal mass ejection (CME)
standing kink wave. Thus, the analysis of observational cases so
far suggests that they are all within the valid regime of the thin
tube approximation of resonantly damped kink waves.

Another interesting feature shown in Figure 2 is the estimated
least squares value of Pout/Pin ≈ 1, suggesting that power gener-
ated at both the outward and inward footpoints is approximately
equal. The 95% confidence intervals for the simultaneous func-
tional bounds, i.e., calculated with all predictor values, are also
shown in Figure 2 by the dashed lines. It can be seen that there
is a trend of decreasing confidence for f ! 3 mHz, most likely
due to the fact that the S/N for the CoMP data decreases with
increasing frequency.

From the estimates of L, vph, and ξE, using Equations (2) and
(3), we can calculate the percentage power loss as a function
of frequency for the observed propagating kink waves after
one travel time between the two loop footpoints, s = 0 and
s = 2L (see Figure 3). The kink waves with f ! 2.5 mHz
lose at least 50% of their power, and as explained previously
in Section 2, this broadband frequency power is converted into
Alfvénic azimuthal motions in many resonant surfaces.

5. CONCLUSIONS

In this Letter, we established more evidence for the damp-
ing mechanism of resonant absorption by analyzing obser-
vational data from the CoMP. Crucially, this instrument has
established that in the solar corona there are ubiquitous propa-
gating low-amplitude (≈1 km s−1) Alfvénic waves with a wide
range of frequencies. Realistically interpreting these propagat-
ing waves as kink modes, it was predicted that they should
exhibit a frequency-dependent damping length due to resonant

Ld ⇠ 1/f

Resonant absorption favours low-f waves

Frequency dependence

Terradas, Goossens, Verth (2010)

Verth et al. (2010)

Spatially damped transverse coronal waves



Spatial damping of propagating kink waves
Terradas Goossens & Verth (2010) Pascoe, Wright, De Moortel (2010)see also Soler et al. (2011a,b)

For propagating transverse kink waves resonant absorption produces spatial damping



Two damping regimes– 12 –

Fig. 1.— Transverse velocity component as a function of height at the axis of the tube for prop-
agating kink waves for a numerical simulation with ⇣ = 1.5 and l/R = 0.4 (case 3 in Table 2).
On the top is the general spatial damping profile given by the solid line. The transition between
Gaussian and exponential damping is given by the vertical dotted line. On the bottom, the general
profile is split into its two components; Gaussian (dot-dash) and exponential (dashed).

Pascoe et al. (2010, 2011, 2012, 2013) Hood et al. (2013) Ruderman & Terradas (2013)

The decay of resonantly damped kink oscillations shows 2 distinct regimes:         
Initial Gaussian decay + subsequent exponential damping

Gaussian damping

Exponential damping

Regime change at location

– 4 –

Because of resonant absorption, spatial damping occurs, and the transverse velocity amplitude
decays with an exponential profile of the form exp(�z/Ld). Under the thin tube and thin boundary
(l/R << 1) approximation, an expression for the damping length, Ld, as a function of the relevant
physical parameters can be obtained. In units of the wavelength this expression is (see Terradas
et al. 2010)

Ld

�
=

 
2
⇡

!2 ✓R
l

◆  ⇣ + 1
⇣ � 1

!
. (2)

The first factor is due to the assumed linear density profile at the non-uniform layer. Note that the
right hand-side of this expression is identical to the one for the damping time over the period for
standing kink waves. The reason is that resonant absorption does not make any distinction with
respect to the standing or propagating character of the wave.

The exponential profile obtained for standing (e.g., Ruderman & Roberts 2002; Goossens
et al. 2002) and propagating (e.g., Terradas et al. 2010) kink waves describes the asymptotic state
of the damping behavior, i.e. at large times or distances. Pascoe et al. (2012) demonstrated with
numerical simulations that the initial damping stage can be described by a Gaussian profile of the
form exp(�z2/L2

g), with Lg the Gaussian damping length scale. Hood et al. (2013) considered the
problem analytically and produced an expression for the full nonlinear spatial damping profile,
which can be approximated as Gaussian for low heights and exponential at large heights. Instead,
Pascoe et al. (2013) proposed a general spatial damping profile composed of a Gaussian damping
profile at low heights and the usual exponential profile at large heights. An example of the spatial
dependence of the velocity amplitude from numerical simulations and the double profile fitting for
such a general damping profile is displayed in Figure 1. The accuracy of this approximate damping
profile was demonstrated by the parametric study performed by Pascoe et al. (2013). This study
shows that the Gaussian damping length scale can be well described by the expression

Lg
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This equation expresses the Gaussian damping length as a function of the same two parameters
that determine the exponential damping length. This means that the observational identification
of two damping regimes and the measurement of their associated length scales would provide
us with additional information without the inclusion of new model parameters. The height, h, at
which the damping regime changes from Gaussian to exponential is given by (see Pascoe et al.
2013)
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problem analytically and produced an expression for the full nonlinear spatial damping profile,
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Fig. 1.— Transverse velocity component as a function of height at the axis of the tube for prop-
agating kink waves for a numerical simulation with ⇣ = 1.5 and l/R = 0.4 (case 3 in Table 2).
On the top is the general spatial damping profile given by the solid line. The transition between
Gaussian and exponential damping is given by the vertical dotted line. On the bottom, the general
profile is split into its two components; Gaussian (dot-dash) and exponential (dashed).
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This equation expresses the Gaussian damping length as a function of the same two parameters
that determine the exponential damping length. This means that the observational identification
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4. Inversion Results

We have first evaluated the performance of our inversion scheme by making the inference
under controlled conditions. We generated predictions for the length scales Lg and h for di↵erent
combinations of the equilibrium parameters, ⇣ = 1.5, 2, 3, 4 and l/R = 0.05, 0.15, 0.2, 0.4, using
Equations (3) and (4). Those synthetic data where treated as observed data in the Bayesian inver-
sion. A 10% uncertainty on the data was considered and the posterior distributions for ⇣ and l/R
were computed, using the likelihood function (7) and the uniform priors. Once the posteriors were
known, the median and the variances associated to the 68% confidence level were calculated. Ta-
ble 1 displays the inversion results for some parameter combinations. In all the cases, the inversion
scheme was able to correctly infer the values for the physical parameters. The larger the density
contrast, the shorter the two length-scales Lg and h are. This increases the errors in the in-
ferred density contrast, while errors in l/R are not a↵ected that much. For the combinations
with the largest ⇣ = 10 and l/R = 0.5, 1, 1.5, Lg and h are comparable to the wavelength. This
would make very problematic the observational identification of the two damping regimes.

Then, simulations of transverse kink wave propagation in a magnetic flux tube were performed
using a numerical code (see Pascoe et al. 2013, for details). A Lax-Wendro↵ code is used to solve
the linear MHD equations in cylindrical coordinates. The lower boundary is driven harmonically
with velocity perturbations corresponding to the loop footprint moving back and forth about its
equilibrium. The simulation ends after 10 periods of oscillation and the spatial damping profile
is investigated by considering the radial velocity component, vr as a function of z at the centre of
the loop (Figure 1). From the behavior of the amplitude of the excited kink waves at di↵erent
heights the damping profile was fitted and values for Lg and h obtained. Using those fitted values
as observed data, we repeated the inversion procedure. For the sake of comparison, parameter
spaces that overlap with those in Table 1 were considered. Figure 2 displays an example of the
marginal posterior distributions and the joint probability distribution for ⇣ and l/R. For both pa-
rameters, well defined probability distributions are obtained. For each parameter, the median of the
marginal posterior and errors given at the 68% credible interval are used to compute the estimates
given in Table 2. This Table shows the values for the physical parameters used in the simulations,
the fitted length scales, and the inferred physical parameters. Numerical and analytical forward
models give similar results. This issue is discussed in detail by Pascoe et al. (2013) (see their
figures 8, 9, and 10). Our Bayesian inference technique properly returns the physical parameters
of interest. As with synthetic data in Table 1, large density contrast values tend to produce
larger errors in their determination by inversion. The main problem lies in obtaining the
parameters Lg, Ld, and h from the data, and specifically in determining h accurately, which
determines the accuracy of the density estimate.

The general spatial damping profile remains an accurate description of the damping
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the full posterior with respect to the rest of parameters

p(✓i|d) =
Z

p(✓|d)d✓1 . . . d✓i�1d✓i+1 . . . d✓N . (6)

The result provides us with all the information for model parameter ✓i available in the priors
and the data. This method also enables us to correctly propagate uncertainties from data to
inferred parameters.

We next specify the likelihood function and the priors. In what follows we assume the
observed data are given by d = (Lg, h), where both observed length-scales are normalized to
the wavelength. The unknowns are gathered in the vector ✓=(⇣, l/R). Under the assumption
that observations are corrupted with Gaussian noise and they are statistically independent, the
likelihood can be expressed as
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⇣
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with Lsyn
g (✓) and hsyn(✓) given by Equations (3) and (4). Likewise, �2

Lg
and �2

h are the variances
associated to the Gaussian damping length and the height h, respectively.

The priors indicate our level of knowledge (ignorance) before considering the observed data.
We have adopted uniform prior distributions for both unknowns over given ranges, so that we can
write

p(✓i) =
1

✓max
i � ✓min

i

for ✓min
i  ✓  ✓max

i , (8)

and zero otherwise. For the minimum and maximum values the intervals ⇣ 2 [1, 20] and l/R 2
[0, 2] have been taken. This choice of priors expresses our belief that the unknown parameters are
constrained to those ranges, with all combinations being equally probable. We have verified that
our posteriors are insensitive to prior changes. This means that they are dominated by the
information contained in the data, that overwhelms the prior information.

The posterior is evaluated for di↵erent combinations of parameters using Bayes’ theorem.
Given that the number of model parameters is two, the computation of the marginal posteriors
using Eq. (6) can be safely done using a numerical quadrature. For this purpose, we have computed
the 1-dimensional integrals using an adaptive Gauss-Kronrod quadrature, which gives very good
precision.
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Figure 1. (a) Posterior distributions for η, under the density stratification model, for two values of the period ratio. (b) Posterior distributions for the magnetic tube
expansion, Γ, under the magnetic expansion model, for two values of the period ratio. The measured period ratio and the inferred median of the distribution, with
uncertainties given at the 68% credible interval are (a) r = 0.91 ± 0.04, η = 1.26+0.65

−0.59; r = 0.79 ± 0.03, η = 3.39+0.72
−0.64 and (b) r = 1.07 ± 0.04, Γ = 1.20+0.10

−0.12;
r = 1.38±0.04, Γ = 1.87+0.07

−0.07. The improved errors on r in the measurements of Verwichte et al. (2004) have been taken from Van Doorsselaere et al. (2007). Similar
errors are assigned to the mean values in the measurements by De Moortel & Brady (2007).

Both longitudinal stratification and magnetic tube expansion
have forward models that relate one observed quantity, the
period ratio P1/2P2, to one physical quantity to be inferred,
η or Γ.

3. BAYESIAN PARAMETER INFERENCE

To perform the inference using existing estimates for the
period ratio, we employ Bayes’ theorem (Bayes & Price 1763)

p(θ |D,M) = p(D|θ ,M)p(θ |M)∫
dθp(D|θ ,M)p(θ |M)

, (3)

which gives the solution to the inverse problem in terms of
the posterior probability distribution, p(θ |D,M), that describes
how probability is distributed among the possible values of the
unknown parameter, θ , given the data D and the assumed model
M. The function p(D|θ,M) is the likelihood of obtaining a
data realization actually observed as a function of the parameter
vector and provides a measure of how well the data are predicted
by the model. The prior probability p(θ |M) encodes any prior
information we might have on the model parameters without
taking into account the observed data. The denominator is the
evidence, an integral of the likelihood over the prior distribution.
This quantity plays no role in parameter inference, but will
become central in the model comparison described in Section 4.

3.1. Longitudinally Stratified Loops

For longitudinally stratified loops, model M1, the forward
problem, is given in Equation (1). To evaluate the likelihood,
we assume that the model is true. Then, the period ratio mea-
surement (r) will differ from the prediction (r1) because of mea-
surement uncertainties (e), so that r = r1 ± e. The probability
of obtaining the measured value is equal to the probability of
the error. Assuming Gaussian errors, the likelihood for model
M1 is then expressed in the following manner

p(r|η,M1) = 1√
2πσ

exp
[
− (r − r1)2

2σ 2

]
, (4)

with σ 2 the variance associated to the observed period ratio.
In the following we assign observed period ratio errors to the
standard deviation σ .

The prior indicates our level of knowledge (ignorance) before
considering the observed data. We have adopted a uniform prior
distribution for the unknown, η, over a given range, so that we
can write

p(η|M1) = 1
ηmax − ηmin

for ηmin ! η ! ηmax, (5)

and zero otherwise. We only consider loops with density
decreasing with height. We know from observations that
very large coronal loops with the apex height above
several atmospheric scale heights exist, so we consider the range
η ∈ [0, 8] in the prior above.

Parameter inference is next performed using Bayes’
theorem (3). We use period ratio measurements reported in
observations by Verwichte et al. (2004). We must note that
unambiguous identification of measured periods with particular
overtones is a difficult task. Early observations were limited to
the measurement of different periodicities at a single point with-
out spatial information (Verwichte et al. 2004). Even in the case
in which information at different cuts along the loops is avail-
able (De Moortel & Brady 2007), it is unclear how one should
assign those periods to theoretical overtones. As our Letter
aims at providing a method to perform parameter inference
and model comparison, we have considered period ratio values
discussed in the review by Andries et al. (2009), noting that the
reliability of the results is closely related to that of the adopted
assumptions and theoretical interpretations.

Figure 1(a) shows posterior probability distributions for η
computed using Equation (3) with likelihood and prior given
by Equations (4) and (5) for two period ratio measurements
by Verwichte et al. (2004). Well constrained distributions are
obtained. For the measured period ratios r ∼ 0.79 and r ∼ 0.91,
the inversion leads to density scale heights of H = 21 Mm and
H = 56 Mm, respectively, for a loop with a height at the apex
of L/π = 70 Mm.

3.2. Expanding Magnetic Loops

For expanding loops, model M2, the forward problem is given
in Equation (2). To evaluate the likelihood, we follow the same
procedure as above, which leads to

p(r|Γ,M2) = 1√
2πσ

exp
[
− (r − r2)2

2σ 2

]
. (6)

2
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and zero otherwise. For the minimum and maximum values the intervals ⇣ 2 [1, 20] and l/R 2
[0, 2] have been taken. This choice of priors expresses our belief that the unknown parameters are
constrained to those ranges, with all combinations being equally probable. We have verified that
our posteriors are insensitive to prior changes. This means that they are dominated by the
information contained in the data, that overwhelms the prior information.

The posterior is evaluated for di↵erent combinations of parameters using Bayes’ theorem.
Given that the number of model parameters is two, the computation of the marginal posteriors
using Eq. (6) can be safely done using a numerical quadrature. For this purpose, we have computed
the 1-dimensional integrals using an adaptive Gauss-Kronrod quadrature, which gives very good
precision.
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Fig. 2.— One-dimensional marginalized posterior distributions for the density contrast (a) and the
transverse inhomogeneity length scale (b) corresponding to the inversion of a spatially damped
transverse oscillation with Lg/� = 4.986 and h/� = 4.909. Uncertainties of 10% have been used.
(c) Joint two-dimensional posterior distribution. The light and dark grey shaded regions cover the
95% and 68% credible regions. The symbol indicates the estimate.
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Inversion result - example

The existence of two damping regimes 
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of interest
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structuring
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Table 1. Inversion of Synthetic Data Using the Analytical Forward Model

Synthetic Parameters Synthetic Data Inversion Results

⇣ l/R Lg/� h/� ⇣ l/R

1.5 0.05 14.2 5.0 1.51+0.08
�0.06 0.05+0.02

�0.01
1.5 0.15 8.2 5.0 1.50+0.07

�0.06 0.16+0.05
�0.04

1.5 0.2 7.1 5.0 1.51+0.07
�0.06 0.21+0.06

�0.05
1.5 0.4 5.0 5.0 1.50+0.07

�0.05 0.44+0.13
�0.11

3 0.05 5.7 2.0 3.11+0.59
�0.38 0.05+0.02

�0.01
3 0.15 3.3 2.0 3.09+0.61

�0.40 0.15+0.05
�0.04

3 0.2 2.9 2.0 3.13+0.58
�0.41 0.19+0.07

�0.05
3 0.4 2.0 2.0 3.10+0.60

�0.41 0.42+0.15
�0.12

4 0.05 4.8 1.7 4.31+1.52
�0.79 0.05+0.02

�0.01
4 0.15 2.7 1.7 4.39+1.47

�0.85 0.15+0.05
�0.04

4 0.2 2.4 1.7 4.38+1.69
�0.85 0.19+0.08

�0.06
4 0.4 1.7 1.7 4.38+1.55

�0.86 0.38+0.14
�0.11

10 0.5 1.1 1.2 11.54+4.58
�3.88 0.51+0.16

�0.11
10 1.0 0.8 1.2 11.55+4.69

�3.81 1.02+0.29
�0.22

10 1.5 0.6 1.2 12.29+4.32
�3.89 1.45+0.29

�0.28
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Table 2. Inversion of Numerical Data From Simulations

Simulation Parameters Fitted Data Inversion Results

⇣ l/R Lg/� h/� ⇣ l/R

1.5 0.05 11.5 3.8 1.73+0.12
�0.09 0.05+0.02

�0.01
1.5 0.15 7.9 4.6 1.56+0.08

�0.07 0.15+0.05
�0.04

1.5 0.2 7.0 4.8 1.53+0.08
�0.06 0.21+0.07

�0.05
1.5 0.4 5.0 4.9 1.52+0.07

�0.06 0.39+0.09
�0.08

3 0.05 5.5 2.1 2.88+0.46
�0.33 0.06+0.02

�0.02
3 0.15 3.5 2.2 2.74+0.44

�0.32 0.16+0.06
�0.04

3 0.2 3.1 2.2 2.74+0.41
�0.30 0.21+0.07

�0.05
3 0.4 2.1 2.0 3.09+0.57

�0.40 0.38+0.13
�0.11

4 0.05 4.9 1.7 4.17+1.32
�0.74 0.05+0.02

�0.01
4 0.15 3.1 1.9 3.19+0.64

�0.42 0.16+0.06
�0.05

4 0.2 2.7 1.9 3.33+0.74
�0.43 0.21+0.07

�0.06
4 0.4 2.3 2.2 2.73+0.43

�0.29 0.38+0.12
�0.10

Inversion technique correctly recovers input parameters
Analytical forward model accurate enough when compared to simulation inversions
Large density contrasts represent a challenge from observational point of view

Inversion with analytical forward model Inversion with numerical simulation



Example #3

Inference of cross-field density structure from 
damping of transverse waves, joint probability 

and marginal posteriors



Conditional probability and marginal posteriors
Joint probability of a and b, given c     p(a,b| c)

p(b|a,c): probability of b, given a and c

p(a|b,c): probability of a, given b and c

p(a|c): probability of a, given c

p(b|c): probability of b, given c

All animals are equal, 
but some animals are more equal than others

George Orwell,  Animal Farm (1945)

In spite of the fact the c can be obtained by an infinite number of combinations of a and b, 
some parameter values are more plausible than others

c = a · b



The probability of a damping ratio
Application of the previous procedure to obtain:
          - density contrast 
          - transverse inhomogeneity length scale 
from the damping ratio of transverse oscillations

r =
⌧d
P

=
2

⇡

✓
R

L

◆✓
⇣ + 1

⇣ � 1

◆
Forward model

Priors

p(⇣) =
1

⇣max � ⇣min

for ⇣min  ⇣  ⇣max

p(l/R) =

1

(l/R)

max � (l/R)

min

for (l/R)

min  l/R  (l/R)

max

Likelihood function

Bayes rule

Marginalise

}
p(r|⇣, l/R) =

1

�r

p
2⇡

exp

(
[r

obs � r
model

(⇣, l/R)]

2

2�r

)

Post ~ likelihood x prior

p(⇣|r) =
R
p(⇣, l/R|r) d(l/R)

p(l/R|r) =
R
p(⇣, l/R|r) d⇣
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with P and ⌧d the period and damping time of the oscillation,
⇣ = ⇢

i

/⇢
e

the density contrast, and l/R the transverse inhomo-
geneity length scale in units of the tube radius R. The factor 2/⇡
arises from the assumed sinusoidal variation of the density pro-
file at the tube boundary. The impact of alternative density pro-
files on seismology estimates is discussed in Soler et al. (2014).
A similar expression is valid for propagating kink waves upon
replacement of the damping time ⌧

d

by the damping length L

d

and of the oscillation period P by the longitudinal wavenumber
k

z

, as shown by Terradas et al. (2010).
To infer ⇣ and l/R the damping ratio r is used as observ-

able. A given damping ratio can be reproduced by either low
contrast waveguides with large transverse inhomogeneity length
scales and for high contrast waveguides with short inhomogene-
ity length scales (Arregui et al. 2007) and the number of combi-
nations is infinite.

We proceed as in Section 2 and assign direct probabilities
for the likelihood function and the prior distribution. Let the two
unknown parameters be gathered in the vector ✓=(⇣, l/R) and let
the set d = r contain discretised data on the damping ratio. We
adopt a Gaussian likelihood function that relates the observed
damping ratio, robs, and the synthetic prediction of the model,
rsyn, given by Equation (4), so that

p(d|✓) = (2⇡�)�1 exp

8>>><
>>>:

h
robs

� rsyn(⇣, l/R)
i2

2�

9>>>=
>>>;
, (5)

with � the variance associated to the measured damping ratio.
The use of a Gaussian likelihood is justified by the distributions
obtained by Asensio Ramos & Arregui (2013) in their analysis
of a large number of loop oscillation events, where Gaussian-
like distributions were found for observed periods and damp-
ing times. We also adopt uniform prior distributions for both
unknowns over given ranges, so that all the values inside those
ranges are equally probable a priori, so we consider

p(✓
i

) =
1

✓max

i

� ✓min

i

for ✓min

i

 ✓
i

 ✓max

i

, (6)

and zero otherwise. Application of Bayes rule (Equation [1])
provides us with the full posterior, p(d|✓) , from which the
marginal posteriors are obtained through marginalisation,

p(⇣ |r) =
R

p(⇣, l/R|r) d(l/R),

p(l/R|r) =
R

p(⇣, l/R|r) d⇣.
(7)

Figure 2 shows an example inversion result. Well behaved
distributions are obtained for both marginal posteriors. The in-
version suggests that low density contrast values are preferred
over large contrast ones. However, the posterior for density con-
trast displays a long tail, which means that this parameter can
only be constrained with a large uncertainty. A more constrained
marginal posterior is obtained for the transverse inhomogene-
ity length scale, which points to short values of l/R to be more
plausible than models with a fully non-uniform layer. The joint
two-dimensional distribution clearly shows that the most plau-
sible models are those with relatively low values for ⇣ and l/R
when a 68% credible region is considered. The 95% credible
region extends the plausible combinations to a larger region in
parameter space, in particular for the density contrast.

Fig. 2. (a) and (b) Marginal posteriors for ⇣ and l/R for an inversion with
a measured damping ratio r = 3 and � = 1, using uniform priors in the
ranges ⇣ 2 [1.1 � 10] and l/R 2 [0.01 � 2]. (c) Joint two-dimensional
posterior distribution for the two inferred parameters. The outer bound-
aries of the light and dark grey shaded regions indicate the 95% and
68% credible regions, respectively.

Inferences depend on the assumed prior ranges, since the in-
tegrals run over the assumed parameter ranges. Figure 3a shows
that varying the upper limit of the transverse inhomogeneity
length scale in its prior distribution does not a↵ect much the de-
termination of density contrast. Alternatively, varying the upper
limit of the considered density contrast in its prior distribution
produces di↵erent marginal posterior for l/R (Figure 3b). In spite
of this, short transverse inhomogeneity length scales are always
found as the most plausible ones.

Observed damping ratios in e.g., coronal loop oscillations are
roughly in between 1 and 5. We have performed the inference
for three particular values (see Figures 3c and d). We find that
damping ratios slightly larger than the oscillation period do not
enable us to constrain the unknown parameters using this method
(dotted lines). Once the damping time is several times the period,
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with P and ⌧d the period and damping time of the oscillation,
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the density contrast, and l/R the transverse inhomo-
geneity length scale in units of the tube radius R. The factor 2/⇡
arises from the assumed sinusoidal variation of the density pro-
file at the tube boundary. The impact of alternative density pro-
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To infer ⇣ and l/R the damping ratio r is used as observ-

able. A given damping ratio can be reproduced by either low
contrast waveguides with large transverse inhomogeneity length
scales and for high contrast waveguides with short inhomogene-
ity length scales (Arregui et al. 2007) and the number of combi-
nations is infinite.

We proceed as in Section 2 and assign direct probabilities
for the likelihood function and the prior distribution. Let the two
unknown parameters be gathered in the vector ✓=(⇣, l/R) and let
the set d = r contain discretised data on the damping ratio. We
adopt a Gaussian likelihood function that relates the observed
damping ratio, robs, and the synthetic prediction of the model,
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The use of a Gaussian likelihood is justified by the distributions
obtained by Asensio Ramos & Arregui (2013) in their analysis
of a large number of loop oscillation events, where Gaussian-
like distributions were found for observed periods and damp-
ing times. We also adopt uniform prior distributions for both
unknowns over given ranges, so that all the values inside those
ranges are equally probable a priori, so we consider
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and zero otherwise. Application of Bayes rule (Equation [1])
provides us with the full posterior, p(d|✓) , from which the
marginal posteriors are obtained through marginalisation,

p(⇣ |r) =
R

p(⇣, l/R|r) d(l/R),

p(l/R|r) =
R

p(⇣, l/R|r) d⇣.
(7)

Figure 2 shows an example inversion result. Well behaved
distributions are obtained for both marginal posteriors. The in-
version suggests that low density contrast values are preferred
over large contrast ones. However, the posterior for density con-
trast displays a long tail, which means that this parameter can
only be constrained with a large uncertainty. A more constrained
marginal posterior is obtained for the transverse inhomogene-
ity length scale, which points to short values of l/R to be more
plausible than models with a fully non-uniform layer. The joint
two-dimensional distribution clearly shows that the most plau-
sible models are those with relatively low values for ⇣ and l/R
when a 68% credible region is considered. The 95% credible
region extends the plausible combinations to a larger region in
parameter space, in particular for the density contrast.

Fig. 2. (a) and (b) Marginal posteriors for ⇣ and l/R for an inversion with
a measured damping ratio r = 3 and � = 1, using uniform priors in the
ranges ⇣ 2 [1.1 � 10] and l/R 2 [0.01 � 2]. (c) Joint two-dimensional
posterior distribution for the two inferred parameters. The outer bound-
aries of the light and dark grey shaded regions indicate the 95% and
68% credible regions, respectively.

Inferences depend on the assumed prior ranges, since the in-
tegrals run over the assumed parameter ranges. Figure 3a shows
that varying the upper limit of the transverse inhomogeneity
length scale in its prior distribution does not a↵ect much the de-
termination of density contrast. Alternatively, varying the upper
limit of the considered density contrast in its prior distribution
produces di↵erent marginal posterior for l/R (Figure 3b). In spite
of this, short transverse inhomogeneity length scales are always
found as the most plausible ones.

Observed damping ratios in e.g., coronal loop oscillations are
roughly in between 1 and 5. We have performed the inference
for three particular values (see Figures 3c and d). We find that
damping ratios slightly larger than the oscillation period do not
enable us to constrain the unknown parameters using this method
(dotted lines). Once the damping time is several times the period,
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Well constrained marginal posteriors

Long tail for contrast -  large uncertainty
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A similar expression is valid for propagating kink waves upon
replacement of the damping time τd by the damping length Ld
and of the oscillation period P by the longitudinal wavenum-
ber kz, as shown by Terradas et al. (2010).

In our particular application, the two unknown parameters
θ = (ζ, l/R) will be inferred using the damping ratio as an ob-
servable, d = r, assuming the resonant damping model, M, as
the explanation for the decay of the oscillations. We proceed as
in Sect. 2 and assign direct probabilities for the likelihood func-
tion and the prior distribution. We adopt a Gaussian likelihood
function that relates the observed damping ratio, r, and the pre-
dictions of the model, rmodel, given by Eq. (4), so that

p(r|ζ, l/R) =
1√
2πσ

exp

⎧⎪⎪⎨
⎪⎪⎩−

[
r − rmodel(ζ, l/R)

]2

2σ2

⎫⎪⎪⎬
⎪⎪⎭ , (5)

with σ the uncertainty associated to the measured damping ra-
tio. We also adopt uniform prior distributions for both unknowns
over given ranges, so that all the values inside those ranges are
equally probable a priori, so we consider

p(θi) =
1

θmax
i − θmin

i

for θmin
i ≤ θi ≤ θmax

i , (6)

and zero otherwise. Application of Bayes rule (Eq. (1)) provides
us with the full posterior, p(θ|d), from which the marginal pos-
teriors are obtained through marginalisation,

p(ζ |r) =
∫

p(ζ, l/R|r) d(l/R),

p(l/R|r) =
∫

p(ζ, l/R|r) dζ.
(7)

Figure 2 shows an example inversion result. The inversion sug-
gests that low density-contrast values are preferred over high
contrast ones. However, the posterior for density contrast dis-
plays a long tail, which means that this parameter can only
be constrained with a large uncertainty. A more constrained
marginal posterior is obtained for the transverse inhomogene-
ity length scale, which points to short values of l/R to be more
plausible than models with a fully non-uniform layer. The joint
two-dimensional distribution shows the combined posterior dis-
tribution for both parameters with the 68% and 95% credible
regions.

Inferences depend on the assumed prior ranges, since the in-
tegrals run over the assumed parameter ranges. The values for
ζmin and (l/R)min were chosen so that they are slightly above the
minimum values permitted by the theoretical model. Figure 3a
shows that varying the upper limit of the transverse inhomogene-
ity length scale in its prior distribution does not affect the de-
termination of density contrast much. Alternatively, varying the
upper limit of the considered density contrast in its prior distri-
bution results in marginal posteriors for l/R that shift towards
shorter transverse inhomogeneity length scales being more plau-
sible (Fig. 3b).

Observed damping ratios in e.g. coronal loop oscillations are
roughly between 1 and 5. We have performed the inference for
three particular values (see Figs. 3c and d). We find that damping
ratios slightly larger than one do not enable us to constrain the
unknown parameters using this method (dotted lines). Once the
damping time is several times the period, e.g. r = 3, well con-
strained distributions are obtained (solid lines). Finally, larger
damping ratios still enable us to constrain l/R, but the only state-
ment that can be made regarding the density contrast is that low
values are more plausible than larger ones (dashed lines). In all
our computations, with damping times of a few oscillatory pe-
riods, short transverse inhomogeneity length scales are always
found to be the most plausible ones.

Fig. 2. a) and b) Marginal posteriors for ζ and l/R for an inversion with
a measured damping ratio r = 3 and σ = 1, using uniform priors in
the ranges ζ ∈ [1.1−10] and l/R ∈ [0.01−2]. c) Joint two-dimensional
posterior distribution for the two inferred parameters. The light and
dark grey shaded regions indicate the 95% and 68% credible regions,
respectively.

4. Conclusions

Seismology of transverse MHD kink oscillations offers a way
to obtain information on the plasma density structuring across
magnetic waveguides. For resonantly damped kink mode oscil-
lations, the determination of the cross-field density profile from
observed damping ratios consists of the solution of an ill-posed
mathematical problem with two unknowns and one observable

In this study we have introduced a modified Bayesian analy-
sis technique that makes use of the basic definition of marginal
posteriors, which are obtained not by sampling the posterior us-
ing a Markov chain Monte Carlo technique as in Arregui &
Asensio Ramos (2011), but by performing the required integrals
over the parameter space once the joint probability is computed.
This has led to a better understanding of when and how the un-
known parameters may be constrained.
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Example #4

Inference/model comparison of coronal density 
scale height and magnetic field expansion 

from multiple period transverse oscillations



Multiple mode harmonic oscillations

Detection of multiple harmonics in 
two coronal loops. Simultaneous 
presence of fundamental and first 
harmonic

Verwichte et al. (2004)

Verwichte et al. (2004); Andries et al. (2005);  Andries, Arregui, & Goossens (2005)

Observations Theory

In a longitudinally inhomogeneous flux 
tube the period ratio of first overtone 
to fundamental mode is smaller than 2 
and depends on density stratification

Ratio P1/P2 < 2



We can mimic an exponentially stratified atmosphere using a straight tube model  
by projecting the vertical density variation onto a semicircular loop of length L and 
height L/pi

Estimate of density scale-height
Consider a vertically stratified atmosphere and a curved coronal loop

And use the observed period ratio together with theoretical calculations to estimate 
the density scale-height in the solar atmosphere

Introduction

Equilibrium

MHD Waves

Numerical Method

Numerical Study

Numerical Results

Application

Summary

Hasiera

JJ II

J I

33-tik 25 garrena

Atzera

Irudi osoa

Itxi

Urten

How much is ↵?

Consider a vertically stratified atmosphere

z=0
R

z=H(z)ρ (s)ρ

z

 L

S

⇢ = ⇢0e
�z/⇤ ⇢(s) = 1� ↵ sin(⇡s/L)

At the top of a semi-circular curved loop z = H = L/⇡ (z=L/2 in the straight loop)

⇢0e
�L/⇡⇤ = ⇢0(1� ↵)

↵ = 1� e�(L/⇡⇤)

• If H = ⇤ ! ↵ ' 0.63

• But, loops with di↵erent lengths have di↵erent ↵’s

⇢(z) = ⇢0 exp
�z/H ⇢(s) =⇠ exp

(�L sin(⇡s/L)/⇡H)



Result for case 1: Path D in Verwichte et al. (2004) 
(Andries, Arregui, & Goossens 2005)

Case 1 (Path D in Verwichte et al. 2004)

⌥ 2� P1
P2

= 0.36± 0.23 =) H⇡
L : [0.276, 1.35 ] with an estimated value H⇡

L = 0.48

⌥ H: [20, 99 ] Mm with an estimated value of H = 36 Mm



Magnetic flux tube expansion
Verth & Erdélyi (2008); Ruderman et al. (2008);  Verth et al. (2008)

We obtain an example of the potential magnetic field satisfying
this condition if we take

 ¼ 1=2ð ÞB1r2 þ  % rJ1(r=l ) cosh (z=l ); ð3Þ

where  % and l are arbitrary constants and J1(x) is the Bessel
function of the first kind and first order. The parameter l can be
considered as the characteristic scale of variation of the magnetic
equilibrium field. Then,

Br ¼ &  %

l
J1

r

l

! "
sinh

z

l

! "
;

Bz ¼ B1 þ  %

l
J0

r

l

! "
cosh

z

l

! "
; ð4Þ

where J0 is the Bessel function of the first kind and zeroth order.
Let j1 be the first positive root of J1(x) so that J1(j1) ¼ 0. Then,
since J 0

0(x) ¼ &J1(x), where the prime indicates the derivative,
J0(x) takes its minimum value at x ¼ j1, and J0(x) takes its max-
imum value of 1 at x ¼ 0. Now, taking

&lB1 <  % cosh (L=l ) < lB1=j J0( j1)j ' 2:5lB1; ð5Þ

we obtain Bz > 0 everywhere. Equation (4) takes an especially
simple form if we take lkL and restrict the attention to the tube
interior and its vicinity assuming rTL. Then, using the approx-
imate expressions for the Bessel functions valid for small values
of the argument (see, e.g., Abramowitz & Stegun 1964),

J0(x) ' 1; J1(x) '
x

2
; ð6Þ

we obtain

Br ' &  %r

2l2
sinh

z

l

! "
; Bz ' B1 þ  %

l
cosh

z

l

! "
: ð7Þ

The approximate equation of the tube boundary is

R(z) ' l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 0

l2B1 þ l % cosh (z=l)

s

; ð8Þ

where  0 is a positive constant. Note that the tube expands
[R(0)>R(( L)] when % > 0, while it contracts [R(0)<R(( L)]
when  % < 0. In what follows we assume that  % > 0, i.e., the
tube expands. The condition that the tube is thin, R(z)TL, takes
the form

 0TL2(B1 þ  %=l ): ð9Þ

The tube radius at the footpoints, Rf ¼ R(( L), is given by

Rf ' l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 0

l2B1 þ l % cosh (L=l )

s

: ð10Þ

The tube expansion factor, k ¼ R(0)/Rf , is given by

k '

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lB1 þ  % cosh (L=l )

lB1 þ  %

s

: ð11Þ

After some algebra, the condition that Bz > 0 given by equa-
tion (5) can be rewritten in the approximate form

k2 < k2m ' ½1& J0( j1)* cosh (L=l )
1& J0( j1) cosh (L=l )

ð12Þ

' 1:4 cosh (L=l )

1þ 0:4 cosh (L=l )
: ð13Þ

We see that km is a monotonically increasing function of L/l,
km ! 1 when L/l ! 0, and km ! ½1& 1/J0( j1)*1/2 ' 1:87 as
L/l ! 1. Using equations (10) and (11) we can rewrite equa-
tion (8) for R(z) as

R(z) ¼ Rf k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh (L=l )& 1

cosh (L=l )& k2 þ k2 & 1
$ %

cosh (z=l )

s
: ð14Þ

We have to emphasize the important property of this particular
model: it can describe only magnetic tubes with relatively small
expansion factors, definitely smaller than 1.87. Note, however,
that this restriction is related to a particular background state that
we only consider as an example. The derivation of the govern-
ing equation is free from any restrictions of this type except that
R(z)TL for any z.

In what follows we consider an arbitrary magnetic field given
by equations (1) and (2). However, we impose the restriction that
Bz > 0 everywhere and that the characteristic scale of the mag-
netic field variation is L. Since the tube is thin, R(z)/L ¼ O(!),
!T1, the second condition implies that, in the vicinity of the
magnetic tube, we can approximate  by the first term of its ex-
pansion in the Taylor series. Since the tube axis is a magnetic
field line,  ¼ const at r ¼ 0. Then, it follows that the approx-
imate expression for  is

 ¼ 1

2
r2h(z): ð15Þ

Fig. 1.—Sketch of the equilibrium configuration.
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Fig. 3. Frequency ratio ω2/ω1 against Γ. Solid line is numerically de-
rived from governing equation, Eq. (69) and the dashed line shows the
analytically derived relation given by Eq. (95).

where ck, f is the kink speed at the footpoints. Applying asymp-
totic approximations (92) and (93) along with Eqs. (89) to (91),
results in an explicit expression for the mode frequency,

(
ωn

ck, f

)2

≈ L√
Γ2 − 1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

nπ

2 arctan
(√
Γ2 − 1

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

2

− 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (94)

Hence by Eq. (94), the ratio of the first harmonic (n = 2) to the
fundamental mode (n = 1) squared is

(
ω2

ω1

)2

≈
π2 − arctan2

(√
Γ2 − 1

)

(π/2)2 − arctan2
(√
Γ2 − 1

) · (95)

Equation (95) shows that change in frequency ratio is purely de-
pendent on the loop expansion factor Γ. Hence by Eq. (95), for
a loop with constant density, the lowest order correction due to
magnetic stratification is

ω2

ω1
≈ 2

⎡
⎢⎢⎢⎢⎢⎢⎣1 +

3
(
Γ2 − 1

)

2π2

⎤
⎥⎥⎥⎥⎥⎥⎦ · (96)

Equation (96) clearly shows that the frequency ratio ω2/ω1 >
2 for an expanding magnetic flux tube with constant density.
Therefore, if magnetic field strength is decreasing with height
above the photosphere, this has the opposite effect to that of
density stratification (cf. Andries et al. 2005a), in agreement
with V07. The relationship between ω2/ω1 and Γ given by
Eq. (95) is compared with values derived numerically, by solv-
ing Eq. (69) using the shooting method (shown in Fig. 3). When
Γ = 1.3, the solutions only differ by a few percent, hence Eq. (95)
is a very reasonable analytical approximation of the frequency
ratio ω2/ω1.

Using Eq. (3) of V07 and the equilibrium magnetic field
given by Eq. (39) in this paper it can be shown that the fre-
quency ratio results with the purely axial field approximation
and EFT models are in excellent agreement. Hence the eigen-
values of the EFT governing Eq. (67) correspond to those of the
much simpler Eq. (3) in V07. However, with increasing mag-
netic stratification a difference becomes apparent in the ampli-
tude profiles (see comparison in Fig. 4). This would be rele-
vant if one wanted to attempt spatial magneto-seismology as
suggested by Erdélyi & Verth (2007) and Verth et al. (2007).
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Fig. 4. Amplitude profile of the 1st harmonic plotted against z (Γ = 1.3)
for the EFT (solid line) and V07 (dashed line) models.
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Fig. 5. Normalised shift of 1st harmonic anti-node plotted against Γ for
the EFT (solid line) and V07 (dashed line) models.

This difference is most clearly seen if one compares the anti-
node shift of the first harmonic. It was pointed out by V07 that
if the magnetic field becomes weaker towards the loop apex, a
useful magneto-seismological signature is the anti-node of the
1st harmonic since it shifts towards the loop apex (see Fig. 4
in this paper and Fig. 5 in V07). Normalised anti-node shift
∆zAN/L, is plotted for the two models in Fig. 5. It can be seen
that the shift for the EFT model is actually greater than predicted
by V07. Quantifying this by example, if we take Γ = 1.3 and
L = 100 Mm, the EFT model and that of V07 predict shifts of
8.24 Mm and 5.50 Mm, respectively, a difference of 2.74 Mm.

6. Implications for magneto-seismology
and estimating coronal density scale heights

Interestingly, there have recently been measurements of fast
kink mode loop oscillations by O’Shea et al. (2007) and
De Moortel & Brady (2007) where ω2/ω1 > 2, which may
be explained by magnetic field divergence being the dom-
inant effect over density stratification. O’Shea et al. found
three examples of cool loop (temperature ≈0.25 MK) oscilla-
tions with harmonics in temporal series image data from the
Coronal Diagnostic Spectrometer (CDS) onboard the SOlar and
Heliospheric Observatory (SOHO). Of the three cases studied,
two both had ω2/ω1 ≈ 2.4. Using the EUV 171 Å passband
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1. INTRODUCTION

Observations of magnetohydrodynamic (MHD) oscillations
in solar coronal loops indicate the simultaneous presence of
multiple mode harmonics in the same structure (Verwichte et al.
2004; De Moortel & Brady 2007; Van Doorsselaere et al. 2007,
2009; O’Shea et al. 2007). Their potential use for the diagnostic
of the plasma conditions in the corona has attracted considerable
interest (see Andries et al. 2009 for a review). The idea was first
put forward by Andries et al. (2005) and Goossens et al. (2006),
who found that the ratio of the fundamental mode period to twice
that of its first overtone in the longitudinal direction depends on
the density structuring along magnetic field lines. It is equal
to unity in longitudinally uniform and unbounded tubes, but is
smaller than one when density stratification is present. Using
observational measurements of period ratios, Andries et al.
(2005) and Van Doorsselaere et al. (2007) obtained estimates
for the coronal density scale height.

An alternative hypothesis was formulated by Verth & Erdélyi
(2008), whereby the expansion of the magnetic loop produces a
deviation from unity in the period ratio, increasing its value. The
effect is relevant for obtaining accurate estimates of the density
scale height using multiple mode period ratios (Verth & Erdélyi
2008; Verth et al. 2008; Ruderman et al. 2008). Observational
evidence for magnetic tube expansion has been reported by, e.g.,
Klimchuk (2000) in soft X-ray loops observed with Yohkoh
and by Watko & Klimchuk (2000) in non-flare and postflare
loops observed with Transition Region and Coronal Explorer.
Observations of period ratios larger than one have been reported
by O’Shea et al. (2007) and De Moortel & Brady (2007).

Since then, period ratio studies have analyzed different
models for the density structuring in coronal loops (McEwan
et al. 2006, 2008), the influence of the elliptic shape of loops
(Morton & Erdélyi 2009), the twist of the magnetic field (Karami
& Bahari 2012), the effect of the environment (Orza et al.
2012), and the temporal expansion of loops (Ballai & Orza
2012). Period ratios have also been analyzed for slow MHD
modes (Macnamara & Roberts 2010) and for sausage modes
(Macnamara & Roberts 2011) and their use has been suggested
in the context of prominence seismology (Dı́az et al. 2010;
Arregui et al. 2012).

The application of Bayesian analysis techniques to coronal
seismology is in its infancy. A first attempt of parameter

inference using damped loop oscillations was presented by
Arregui & Asensio Ramos (2011). In this Letter, we present
the first application of Bayesian model comparison techniques
to coronal seismology. We first perform Bayesian parameter in-
ference for the coronal density scale height and the magnetic
tube expansion, under the two hypotheses of density stratifica-
tion and magnetic field divergence, using multiple mode oscil-
lations. Then we assess which one of the two hypotheses better
explains the observations for given values of the period ratio.

2. THEORETICAL MODELS

The deviation from unity for the ratio between the fundamen-
tal and the first overtone transverse kink oscillation periods has
been attributed to two main physical effects. Each one consti-
tutes a hypothesis to explain the data.

In the model by Andries et al. (2005), coronal density
stratification produces a decrease of the period ratio. This model
projects a vertically stratified isothermal atmosphere onto a
semicircular loop. An analytical expression for the dependence
of the period ratio on density scale height was obtained by Safari
et al. (2007). This expression can be rewritten as

r1 = P1

2P2
= 1 − 4

5

(
η

η + 3π2

)
, (1)

with P1 and P2 the periods of the fundamental and first overtone
modes, η = L/πH the ratio of the loop height at the apex to the
density scale height H, and L the loop length. We have checked
that Equation (1) provides us with a good approximation to the
numerical results by Andries et al. (2005).

In the model by Verth & Erdélyi (2008), magnetic tube
expansion produces an increase of the period ratio given by

r2 = P1

2P2
= 1 +

3(Γ2 − 1)
2π2

, (2)

with the expansion defined as Γ = ra/rf , where ra is the radius
at the apex and rf is the radius at the footpoint. Equation (2)
was obtained under the assumption that |Γ −1| ≪ 1. Moreover,
it is the result for a particular expanding loop model. Another
equilibrium state will produce a quantitatively different result,
although Ruderman et al. (2008) anticipate a qualitatively
similar result.
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2 Departamento de Astrofı́sica, Universidad de La Laguna, E-38205 La Laguna, Tenerife, Spain; iarregui@iac.es
Received 2012 December 14; accepted 2013 February 2; published 2013 February 19

ABSTRACT

The detection of multiple mode harmonic kink oscillations in coronal loops enables us to obtain information on
coronal density stratification and magnetic field expansion using seismology inversion techniques. The inference is
based on the measurement of the period ratio between the fundamental mode and the first overtone and theoretical
results for the period ratio under the hypotheses of coronal density stratification and magnetic field expansion of
the wave guide. We present a Bayesian analysis of multiple mode harmonic oscillations for the inversion of the
density scale height and magnetic flux tube expansion under each of the hypotheses. The two models are then
compared using a Bayesian model comparison scheme to assess how plausible each one is given our current state
of knowledge.

Key words: magnetohydrodynamics (MHD) – methods: statistical – Sun: corona – Sun: oscillations

1. INTRODUCTION

Observations of magnetohydrodynamic (MHD) oscillations
in solar coronal loops indicate the simultaneous presence of
multiple mode harmonics in the same structure (Verwichte et al.
2004; De Moortel & Brady 2007; Van Doorsselaere et al. 2007,
2009; O’Shea et al. 2007). Their potential use for the diagnostic
of the plasma conditions in the corona has attracted considerable
interest (see Andries et al. 2009 for a review). The idea was first
put forward by Andries et al. (2005) and Goossens et al. (2006),
who found that the ratio of the fundamental mode period to twice
that of its first overtone in the longitudinal direction depends on
the density structuring along magnetic field lines. It is equal
to unity in longitudinally uniform and unbounded tubes, but is
smaller than one when density stratification is present. Using
observational measurements of period ratios, Andries et al.
(2005) and Van Doorsselaere et al. (2007) obtained estimates
for the coronal density scale height.

An alternative hypothesis was formulated by Verth & Erdélyi
(2008), whereby the expansion of the magnetic loop produces a
deviation from unity in the period ratio, increasing its value. The
effect is relevant for obtaining accurate estimates of the density
scale height using multiple mode period ratios (Verth & Erdélyi
2008; Verth et al. 2008; Ruderman et al. 2008). Observational
evidence for magnetic tube expansion has been reported by, e.g.,
Klimchuk (2000) in soft X-ray loops observed with Yohkoh
and by Watko & Klimchuk (2000) in non-flare and postflare
loops observed with Transition Region and Coronal Explorer.
Observations of period ratios larger than one have been reported
by O’Shea et al. (2007) and De Moortel & Brady (2007).

Since then, period ratio studies have analyzed different
models for the density structuring in coronal loops (McEwan
et al. 2006, 2008), the influence of the elliptic shape of loops
(Morton & Erdélyi 2009), the twist of the magnetic field (Karami
& Bahari 2012), the effect of the environment (Orza et al.
2012), and the temporal expansion of loops (Ballai & Orza
2012). Period ratios have also been analyzed for slow MHD
modes (Macnamara & Roberts 2010) and for sausage modes
(Macnamara & Roberts 2011) and their use has been suggested
in the context of prominence seismology (Dı́az et al. 2010;
Arregui et al. 2012).

The application of Bayesian analysis techniques to coronal
seismology is in its infancy. A first attempt of parameter

inference using damped loop oscillations was presented by
Arregui & Asensio Ramos (2011). In this Letter, we present
the first application of Bayesian model comparison techniques
to coronal seismology. We first perform Bayesian parameter in-
ference for the coronal density scale height and the magnetic
tube expansion, under the two hypotheses of density stratifica-
tion and magnetic field divergence, using multiple mode oscil-
lations. Then we assess which one of the two hypotheses better
explains the observations for given values of the period ratio.

2. THEORETICAL MODELS

The deviation from unity for the ratio between the fundamen-
tal and the first overtone transverse kink oscillation periods has
been attributed to two main physical effects. Each one consti-
tutes a hypothesis to explain the data.

In the model by Andries et al. (2005), coronal density
stratification produces a decrease of the period ratio. This model
projects a vertically stratified isothermal atmosphere onto a
semicircular loop. An analytical expression for the dependence
of the period ratio on density scale height was obtained by Safari
et al. (2007). This expression can be rewritten as

r1 = P1

2P2
= 1 − 4
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(
η

η + 3π2

)
, (1)

with P1 and P2 the periods of the fundamental and first overtone
modes, η = L/πH the ratio of the loop height at the apex to the
density scale height H, and L the loop length. We have checked
that Equation (1) provides us with a good approximation to the
numerical results by Andries et al. (2005).

In the model by Verth & Erdélyi (2008), magnetic tube
expansion produces an increase of the period ratio given by

r2 = P1

2P2
= 1 +

3(Γ2 − 1)
2π2

, (2)

with the expansion defined as Γ = ra/rf , where ra is the radius
at the apex and rf is the radius at the footpoint. Equation (2)
was obtained under the assumption that |Γ −1| ≪ 1. Moreover,
it is the result for a particular expanding loop model. Another
equilibrium state will produce a quantitatively different result,
although Ruderman et al. (2008) anticipate a qualitatively
similar result.
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1. INTRODUCTION

Observations of magnetohydrodynamic (MHD) oscillations
in solar coronal loops indicate the simultaneous presence of
multiple mode harmonics in the same structure (Verwichte et al.
2004; De Moortel & Brady 2007; Van Doorsselaere et al. 2007,
2009; O’Shea et al. 2007). Their potential use for the diagnostic
of the plasma conditions in the corona has attracted considerable
interest (see Andries et al. 2009 for a review). The idea was first
put forward by Andries et al. (2005) and Goossens et al. (2006),
who found that the ratio of the fundamental mode period to twice
that of its first overtone in the longitudinal direction depends on
the density structuring along magnetic field lines. It is equal
to unity in longitudinally uniform and unbounded tubes, but is
smaller than one when density stratification is present. Using
observational measurements of period ratios, Andries et al.
(2005) and Van Doorsselaere et al. (2007) obtained estimates
for the coronal density scale height.

An alternative hypothesis was formulated by Verth & Erdélyi
(2008), whereby the expansion of the magnetic loop produces a
deviation from unity in the period ratio, increasing its value. The
effect is relevant for obtaining accurate estimates of the density
scale height using multiple mode period ratios (Verth & Erdélyi
2008; Verth et al. 2008; Ruderman et al. 2008). Observational
evidence for magnetic tube expansion has been reported by, e.g.,
Klimchuk (2000) in soft X-ray loops observed with Yohkoh
and by Watko & Klimchuk (2000) in non-flare and postflare
loops observed with Transition Region and Coronal Explorer.
Observations of period ratios larger than one have been reported
by O’Shea et al. (2007) and De Moortel & Brady (2007).

Since then, period ratio studies have analyzed different
models for the density structuring in coronal loops (McEwan
et al. 2006, 2008), the influence of the elliptic shape of loops
(Morton & Erdélyi 2009), the twist of the magnetic field (Karami
& Bahari 2012), the effect of the environment (Orza et al.
2012), and the temporal expansion of loops (Ballai & Orza
2012). Period ratios have also been analyzed for slow MHD
modes (Macnamara & Roberts 2010) and for sausage modes
(Macnamara & Roberts 2011) and their use has been suggested
in the context of prominence seismology (Dı́az et al. 2010;
Arregui et al. 2012).

The application of Bayesian analysis techniques to coronal
seismology is in its infancy. A first attempt of parameter

inference using damped loop oscillations was presented by
Arregui & Asensio Ramos (2011). In this Letter, we present
the first application of Bayesian model comparison techniques
to coronal seismology. We first perform Bayesian parameter in-
ference for the coronal density scale height and the magnetic
tube expansion, under the two hypotheses of density stratifica-
tion and magnetic field divergence, using multiple mode oscil-
lations. Then we assess which one of the two hypotheses better
explains the observations for given values of the period ratio.

2. THEORETICAL MODELS

The deviation from unity for the ratio between the fundamen-
tal and the first overtone transverse kink oscillation periods has
been attributed to two main physical effects. Each one consti-
tutes a hypothesis to explain the data.

In the model by Andries et al. (2005), coronal density
stratification produces a decrease of the period ratio. This model
projects a vertically stratified isothermal atmosphere onto a
semicircular loop. An analytical expression for the dependence
of the period ratio on density scale height was obtained by Safari
et al. (2007). This expression can be rewritten as

r1 = P1
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, (1)

with P1 and P2 the periods of the fundamental and first overtone
modes, η = L/πH the ratio of the loop height at the apex to the
density scale height H, and L the loop length. We have checked
that Equation (1) provides us with a good approximation to the
numerical results by Andries et al. (2005).

In the model by Verth & Erdélyi (2008), magnetic tube
expansion produces an increase of the period ratio given by

r2 = P1
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= 1 +

3(Γ2 − 1)
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, (2)

with the expansion defined as Γ = ra/rf , where ra is the radius
at the apex and rf is the radius at the footpoint. Equation (2)
was obtained under the assumption that |Γ −1| ≪ 1. Moreover,
it is the result for a particular expanding loop model. Another
equilibrium state will produce a quantitatively different result,
although Ruderman et al. (2008) anticipate a qualitatively
similar result.
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1. INTRODUCTION

Observations of magnetohydrodynamic (MHD) oscillations
in solar coronal loops indicate the simultaneous presence of
multiple mode harmonics in the same structure (Verwichte et al.
2004; De Moortel & Brady 2007; Van Doorsselaere et al. 2007,
2009; O’Shea et al. 2007). Their potential use for the diagnostic
of the plasma conditions in the corona has attracted considerable
interest (see Andries et al. 2009 for a review). The idea was first
put forward by Andries et al. (2005) and Goossens et al. (2006),
who found that the ratio of the fundamental mode period to twice
that of its first overtone in the longitudinal direction depends on
the density structuring along magnetic field lines. It is equal
to unity in longitudinally uniform and unbounded tubes, but is
smaller than one when density stratification is present. Using
observational measurements of period ratios, Andries et al.
(2005) and Van Doorsselaere et al. (2007) obtained estimates
for the coronal density scale height.

An alternative hypothesis was formulated by Verth & Erdélyi
(2008), whereby the expansion of the magnetic loop produces a
deviation from unity in the period ratio, increasing its value. The
effect is relevant for obtaining accurate estimates of the density
scale height using multiple mode period ratios (Verth & Erdélyi
2008; Verth et al. 2008; Ruderman et al. 2008). Observational
evidence for magnetic tube expansion has been reported by, e.g.,
Klimchuk (2000) in soft X-ray loops observed with Yohkoh
and by Watko & Klimchuk (2000) in non-flare and postflare
loops observed with Transition Region and Coronal Explorer.
Observations of period ratios larger than one have been reported
by O’Shea et al. (2007) and De Moortel & Brady (2007).

Since then, period ratio studies have analyzed different
models for the density structuring in coronal loops (McEwan
et al. 2006, 2008), the influence of the elliptic shape of loops
(Morton & Erdélyi 2009), the twist of the magnetic field (Karami
& Bahari 2012), the effect of the environment (Orza et al.
2012), and the temporal expansion of loops (Ballai & Orza
2012). Period ratios have also been analyzed for slow MHD
modes (Macnamara & Roberts 2010) and for sausage modes
(Macnamara & Roberts 2011) and their use has been suggested
in the context of prominence seismology (Dı́az et al. 2010;
Arregui et al. 2012).

The application of Bayesian analysis techniques to coronal
seismology is in its infancy. A first attempt of parameter

inference using damped loop oscillations was presented by
Arregui & Asensio Ramos (2011). In this Letter, we present
the first application of Bayesian model comparison techniques
to coronal seismology. We first perform Bayesian parameter in-
ference for the coronal density scale height and the magnetic
tube expansion, under the two hypotheses of density stratifica-
tion and magnetic field divergence, using multiple mode oscil-
lations. Then we assess which one of the two hypotheses better
explains the observations for given values of the period ratio.

2. THEORETICAL MODELS

The deviation from unity for the ratio between the fundamen-
tal and the first overtone transverse kink oscillation periods has
been attributed to two main physical effects. Each one consti-
tutes a hypothesis to explain the data.

In the model by Andries et al. (2005), coronal density
stratification produces a decrease of the period ratio. This model
projects a vertically stratified isothermal atmosphere onto a
semicircular loop. An analytical expression for the dependence
of the period ratio on density scale height was obtained by Safari
et al. (2007). This expression can be rewritten as
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with P1 and P2 the periods of the fundamental and first overtone
modes, η = L/πH the ratio of the loop height at the apex to the
density scale height H, and L the loop length. We have checked
that Equation (1) provides us with a good approximation to the
numerical results by Andries et al. (2005).

In the model by Verth & Erdélyi (2008), magnetic tube
expansion produces an increase of the period ratio given by
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with the expansion defined as Γ = ra/rf , where ra is the radius
at the apex and rf is the radius at the footpoint. Equation (2)
was obtained under the assumption that |Γ −1| ≪ 1. Moreover,
it is the result for a particular expanding loop model. Another
equilibrium state will produce a quantitatively different result,
although Ruderman et al. (2008) anticipate a qualitatively
similar result.
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Figure 1. (a) Posterior distributions for η, under the density stratification model, for two values of the period ratio. (b) Posterior distributions for the magnetic tube
expansion, Γ, under the magnetic expansion model, for two values of the period ratio. The measured period ratio and the inferred median of the distribution, with
uncertainties given at the 68% credible interval are (a) r = 0.91 ± 0.04, η = 1.26+0.65

−0.59; r = 0.79 ± 0.03, η = 3.39+0.72
−0.64 and (b) r = 1.07 ± 0.04, Γ = 1.20+0.10

−0.12;
r = 1.38±0.04, Γ = 1.87+0.07

−0.07. The improved errors on r in the measurements of Verwichte et al. (2004) have been taken from Van Doorsselaere et al. (2007). Similar
errors are assigned to the mean values in the measurements by De Moortel & Brady (2007).

Both longitudinal stratification and magnetic tube expansion
have forward models that relate one observed quantity, the
period ratio P1/2P2, to one physical quantity to be inferred,
η or Γ.

3. BAYESIAN PARAMETER INFERENCE

To perform the inference using existing estimates for the
period ratio, we employ Bayes’ theorem (Bayes & Price 1763)

p(θ |D,M) = p(D|θ ,M)p(θ |M)∫
dθp(D|θ ,M)p(θ |M)

, (3)

which gives the solution to the inverse problem in terms of
the posterior probability distribution, p(θ |D,M), that describes
how probability is distributed among the possible values of the
unknown parameter, θ , given the data D and the assumed model
M. The function p(D|θ,M) is the likelihood of obtaining a
data realization actually observed as a function of the parameter
vector and provides a measure of how well the data are predicted
by the model. The prior probability p(θ |M) encodes any prior
information we might have on the model parameters without
taking into account the observed data. The denominator is the
evidence, an integral of the likelihood over the prior distribution.
This quantity plays no role in parameter inference, but will
become central in the model comparison described in Section 4.

3.1. Longitudinally Stratified Loops

For longitudinally stratified loops, model M1, the forward
problem, is given in Equation (1). To evaluate the likelihood,
we assume that the model is true. Then, the period ratio mea-
surement (r) will differ from the prediction (r1) because of mea-
surement uncertainties (e), so that r = r1 ± e. The probability
of obtaining the measured value is equal to the probability of
the error. Assuming Gaussian errors, the likelihood for model
M1 is then expressed in the following manner

p(r|η,M1) = 1√
2πσ

exp
[
− (r − r1)2

2σ 2

]
, (4)

with σ 2 the variance associated to the observed period ratio.
In the following we assign observed period ratio errors to the
standard deviation σ .

The prior indicates our level of knowledge (ignorance) before
considering the observed data. We have adopted a uniform prior
distribution for the unknown, η, over a given range, so that we
can write

p(η|M1) = 1
ηmax − ηmin

for ηmin ! η ! ηmax, (5)

and zero otherwise. We only consider loops with density
decreasing with height. We know from observations that
very large coronal loops with the apex height above
several atmospheric scale heights exist, so we consider the range
η ∈ [0, 8] in the prior above.

Parameter inference is next performed using Bayes’
theorem (3). We use period ratio measurements reported in
observations by Verwichte et al. (2004). We must note that
unambiguous identification of measured periods with particular
overtones is a difficult task. Early observations were limited to
the measurement of different periodicities at a single point with-
out spatial information (Verwichte et al. 2004). Even in the case
in which information at different cuts along the loops is avail-
able (De Moortel & Brady 2007), it is unclear how one should
assign those periods to theoretical overtones. As our Letter
aims at providing a method to perform parameter inference
and model comparison, we have considered period ratio values
discussed in the review by Andries et al. (2009), noting that the
reliability of the results is closely related to that of the adopted
assumptions and theoretical interpretations.

Figure 1(a) shows posterior probability distributions for η
computed using Equation (3) with likelihood and prior given
by Equations (4) and (5) for two period ratio measurements
by Verwichte et al. (2004). Well constrained distributions are
obtained. For the measured period ratios r ∼ 0.79 and r ∼ 0.91,
the inversion leads to density scale heights of H = 21 Mm and
H = 56 Mm, respectively, for a loop with a height at the apex
of L/π = 70 Mm.

3.2. Expanding Magnetic Loops

For expanding loops, model M2, the forward problem is given
in Equation (2). To evaluate the likelihood, we follow the same
procedure as above, which leads to

p(r|Γ,M2) = 1√
2πσ

exp
[
− (r − r2)2

2σ 2

]
. (6)
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Figure 1. (a) Posterior distributions for η, under the density stratification model, for two values of the period ratio. (b) Posterior distributions for the magnetic tube
expansion, Γ, under the magnetic expansion model, for two values of the period ratio. The measured period ratio and the inferred median of the distribution, with
uncertainties given at the 68% credible interval are (a) r = 0.91 ± 0.04, η = 1.26+0.65

−0.59; r = 0.79 ± 0.03, η = 3.39+0.72
−0.64 and (b) r = 1.07 ± 0.04, Γ = 1.20+0.10

−0.12;
r = 1.38±0.04, Γ = 1.87+0.07

−0.07. The improved errors on r in the measurements of Verwichte et al. (2004) have been taken from Van Doorsselaere et al. (2007). Similar
errors are assigned to the mean values in the measurements by De Moortel & Brady (2007).

Both longitudinal stratification and magnetic tube expansion
have forward models that relate one observed quantity, the
period ratio P1/2P2, to one physical quantity to be inferred,
η or Γ.

3. BAYESIAN PARAMETER INFERENCE

To perform the inference using existing estimates for the
period ratio, we employ Bayes’ theorem (Bayes & Price 1763)

p(θ |D,M) = p(D|θ ,M)p(θ |M)∫
dθp(D|θ ,M)p(θ |M)

, (3)

which gives the solution to the inverse problem in terms of
the posterior probability distribution, p(θ |D,M), that describes
how probability is distributed among the possible values of the
unknown parameter, θ , given the data D and the assumed model
M. The function p(D|θ,M) is the likelihood of obtaining a
data realization actually observed as a function of the parameter
vector and provides a measure of how well the data are predicted
by the model. The prior probability p(θ |M) encodes any prior
information we might have on the model parameters without
taking into account the observed data. The denominator is the
evidence, an integral of the likelihood over the prior distribution.
This quantity plays no role in parameter inference, but will
become central in the model comparison described in Section 4.

3.1. Longitudinally Stratified Loops

For longitudinally stratified loops, model M1, the forward
problem, is given in Equation (1). To evaluate the likelihood,
we assume that the model is true. Then, the period ratio mea-
surement (r) will differ from the prediction (r1) because of mea-
surement uncertainties (e), so that r = r1 ± e. The probability
of obtaining the measured value is equal to the probability of
the error. Assuming Gaussian errors, the likelihood for model
M1 is then expressed in the following manner

p(r|η,M1) = 1√
2πσ

exp
[
− (r − r1)2

2σ 2

]
, (4)

with σ 2 the variance associated to the observed period ratio.
In the following we assign observed period ratio errors to the
standard deviation σ .

The prior indicates our level of knowledge (ignorance) before
considering the observed data. We have adopted a uniform prior
distribution for the unknown, η, over a given range, so that we
can write

p(η|M1) = 1
ηmax − ηmin

for ηmin ! η ! ηmax, (5)

and zero otherwise. We only consider loops with density
decreasing with height. We know from observations that
very large coronal loops with the apex height above
several atmospheric scale heights exist, so we consider the range
η ∈ [0, 8] in the prior above.

Parameter inference is next performed using Bayes’
theorem (3). We use period ratio measurements reported in
observations by Verwichte et al. (2004). We must note that
unambiguous identification of measured periods with particular
overtones is a difficult task. Early observations were limited to
the measurement of different periodicities at a single point with-
out spatial information (Verwichte et al. 2004). Even in the case
in which information at different cuts along the loops is avail-
able (De Moortel & Brady 2007), it is unclear how one should
assign those periods to theoretical overtones. As our Letter
aims at providing a method to perform parameter inference
and model comparison, we have considered period ratio values
discussed in the review by Andries et al. (2009), noting that the
reliability of the results is closely related to that of the adopted
assumptions and theoretical interpretations.

Figure 1(a) shows posterior probability distributions for η
computed using Equation (3) with likelihood and prior given
by Equations (4) and (5) for two period ratio measurements
by Verwichte et al. (2004). Well constrained distributions are
obtained. For the measured period ratios r ∼ 0.79 and r ∼ 0.91,
the inversion leads to density scale heights of H = 21 Mm and
H = 56 Mm, respectively, for a loop with a height at the apex
of L/π = 70 Mm.

3.2. Expanding Magnetic Loops

For expanding loops, model M2, the forward problem is given
in Equation (2). To evaluate the likelihood, we follow the same
procedure as above, which leads to

p(r|Γ,M2) = 1√
2πσ

exp
[
− (r − r2)2

2σ 2

]
. (6)
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Figure 1. (a) Posterior distributions for η, under the density stratification model, for two values of the period ratio. (b) Posterior distributions for the magnetic tube
expansion, Γ, under the magnetic expansion model, for two values of the period ratio. The measured period ratio and the inferred median of the distribution, with
uncertainties given at the 68% credible interval are (a) r = 0.91 ± 0.04, η = 1.26+0.65

−0.59; r = 0.79 ± 0.03, η = 3.39+0.72
−0.64 and (b) r = 1.07 ± 0.04, Γ = 1.20+0.10

−0.12;
r = 1.38±0.04, Γ = 1.87+0.07

−0.07. The improved errors on r in the measurements of Verwichte et al. (2004) have been taken from Van Doorsselaere et al. (2007). Similar
errors are assigned to the mean values in the measurements by De Moortel & Brady (2007).

Both longitudinal stratification and magnetic tube expansion
have forward models that relate one observed quantity, the
period ratio P1/2P2, to one physical quantity to be inferred,
η or Γ.

3. BAYESIAN PARAMETER INFERENCE

To perform the inference using existing estimates for the
period ratio, we employ Bayes’ theorem (Bayes & Price 1763)

p(θ |D,M) = p(D|θ ,M)p(θ |M)∫
dθp(D|θ ,M)p(θ |M)

, (3)

which gives the solution to the inverse problem in terms of
the posterior probability distribution, p(θ |D,M), that describes
how probability is distributed among the possible values of the
unknown parameter, θ , given the data D and the assumed model
M. The function p(D|θ,M) is the likelihood of obtaining a
data realization actually observed as a function of the parameter
vector and provides a measure of how well the data are predicted
by the model. The prior probability p(θ |M) encodes any prior
information we might have on the model parameters without
taking into account the observed data. The denominator is the
evidence, an integral of the likelihood over the prior distribution.
This quantity plays no role in parameter inference, but will
become central in the model comparison described in Section 4.

3.1. Longitudinally Stratified Loops

For longitudinally stratified loops, model M1, the forward
problem, is given in Equation (1). To evaluate the likelihood,
we assume that the model is true. Then, the period ratio mea-
surement (r) will differ from the prediction (r1) because of mea-
surement uncertainties (e), so that r = r1 ± e. The probability
of obtaining the measured value is equal to the probability of
the error. Assuming Gaussian errors, the likelihood for model
M1 is then expressed in the following manner

p(r|η,M1) = 1√
2πσ

exp
[
− (r − r1)2

2σ 2

]
, (4)

with σ 2 the variance associated to the observed period ratio.
In the following we assign observed period ratio errors to the
standard deviation σ .

The prior indicates our level of knowledge (ignorance) before
considering the observed data. We have adopted a uniform prior
distribution for the unknown, η, over a given range, so that we
can write

p(η|M1) = 1
ηmax − ηmin

for ηmin ! η ! ηmax, (5)

and zero otherwise. We only consider loops with density
decreasing with height. We know from observations that
very large coronal loops with the apex height above
several atmospheric scale heights exist, so we consider the range
η ∈ [0, 8] in the prior above.

Parameter inference is next performed using Bayes’
theorem (3). We use period ratio measurements reported in
observations by Verwichte et al. (2004). We must note that
unambiguous identification of measured periods with particular
overtones is a difficult task. Early observations were limited to
the measurement of different periodicities at a single point with-
out spatial information (Verwichte et al. 2004). Even in the case
in which information at different cuts along the loops is avail-
able (De Moortel & Brady 2007), it is unclear how one should
assign those periods to theoretical overtones. As our Letter
aims at providing a method to perform parameter inference
and model comparison, we have considered period ratio values
discussed in the review by Andries et al. (2009), noting that the
reliability of the results is closely related to that of the adopted
assumptions and theoretical interpretations.

Figure 1(a) shows posterior probability distributions for η
computed using Equation (3) with likelihood and prior given
by Equations (4) and (5) for two period ratio measurements
by Verwichte et al. (2004). Well constrained distributions are
obtained. For the measured period ratios r ∼ 0.79 and r ∼ 0.91,
the inversion leads to density scale heights of H = 21 Mm and
H = 56 Mm, respectively, for a loop with a height at the apex
of L/π = 70 Mm.

3.2. Expanding Magnetic Loops

For expanding loops, model M2, the forward problem is given
in Equation (2). To evaluate the likelihood, we follow the same
procedure as above, which leads to

p(r|Γ,M2) = 1√
2πσ

exp
[
− (r − r2)2

2σ 2

]
. (6)
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We also adopt a uniform prior distribution for the unknown
Γ, so that we can write

p(Γ|M2) = 1
Γmax − Γmin

for Γmin ! Γ ! Γmax, (7)

and zero otherwise. We consider Γ ∈ [1, 2.5].
Figure 1(b) shows posterior probability distributions for Γ

computed using Equation (3) with likelihood and prior given by
Equations (6) and (7) for two period ratio measurements. Again,
well constrained distributions are obtained. Andries et al. (2009)
discuss period ratio measurements in Table 1 by De Moortel &
Brady (2007). Assuming that either the most power is in the
fundamental mode or in the first overtone, mean values for
the period ratio of r ∼ 1.07 and r ∼ 1.38 are obtained. For
those values, the inversion leads to tube expansion factors that
are compatible with the estimates by Klimchuk (2000) and
Watko & Klimchuk (2000). Note, however, that, according to
Figure 1(b), a period ratio of r ∼ 1.38 requires an expansion of
the tube by a factor of Γ ∼ 1.85, while observations by Watko
& Klimchuk (2000) seem to indicate that in only very few cases
does this parameter approach or exceed a value of 2.

For both theoretical models, the Bayesian framework makes
use of all the available information in a consistent manner and
enables us to consistently propagate errors from observations to
inferred parameters.

4. BAYESIAN MODEL COMPARISON

Parameter inference was performed under the hypothesis that
observed period ratios are the effect of either density stratifica-
tion or magnetic tube expansion. The probability distributions in
Figure 1 are conditional on the specific models used to explain
the observations. The Bayesian framework enables us to present
different models to the same data and assess in a quantitative
manner which one is favored. We have compared three mod-
els: M0 for a uniform density and magnetic field strength tube,
M1 for a longitudinally stratified loop, and M2 for a expanding
magnetic loop.

As model M0 predicts a period ratio of one, regardless of η
or Γ, we can write

p(r|M0) = 1√
2πσ

exp
[
− (r − 1)2

2σ 2

]
, (8)

for the likelihood in this case. Note that p(r|M0) =
p(r|η,M0) = p(r|Γ,M0).

To determine the plausibility of models M1 and M2 between
them and with respect to model M0, we evaluate the posterior
probabilities to ascertain the relative merits of two models, Mi
and Mj. This is done by applying Bayes’ theorem (Equation (3))
to the two models and considering posterior ratios of the form
(Jeffreys 1961)

p(Mi |r)
p(Mj |r)

= p(r|Mi)
p(r|Mj )

p(Mi)
p(Mj )

. (9)

The first ratio on the right-hand side is the Bayes factor. It
expresses how well the observed data are predicted by model
Mi, compared to model Mj. The second ratio, the prior odds
ratio, measures how much our initial beliefs favored Mi over Mj,
before considering the data. As we have no particular a priori
preference for one model over the other, before considering the
data, we take p(Mi) = p(Mj ) = 1/2. Our assessment of the

plausibility of models is then based on the computation of the
Bayes factor of Mi against Mj given by

BFij = p(r|Mi)
p(r|Mj )

. (10)

In model selection, we are interested in the most proba-
ble model, independently of the parameters, i.e., we should
marginalize out all parameters. This is achieved by performing
an integral of the likelihood over the full parameter space. The
marginal likelihood for a given model Mi is then

p(r|Mi) =
∫ θmax

θmin
p(r, θ |Mi)dθ =

∫ θmax

θmin
p(r|θ,Mi)p(θ |Mi)dθ,

(11)
where θ ∈ [θmin, θmax] represents the particular parameter of
the model and we have used the product rule to expand the
probability of r and θ , given model Mi.

Figure 2(a) displays the marginal likelihoods for the three
considered models. For a given observed period ratio, the
plausibility of one model over the other is given by the ratio
of these two quantities at the measured period ratio r. The
uniform model has a marginal likelihood that is maximum at
one. The model with density stratification is clearly favored for
observations of period ratios below unity. Figure 2(b) quantifies
the relative performance of models M1 and M0 by computing the
Bayes factor. The lower r, the more plausible M1 is against M0.
Jeffreys’ scale (Jeffreys 1961; Kass & Raftery 1995) assigns
different levels of evidence to the values of the Bayes factor
in natural logarithm units. They are shown using different
darkening options in Figures 2(b)–(d). According to Figure 2(b),
and given the assumed uncertainty of σ = 0.08, a period ratio
measurement should be considered as positive evidence for
model M1 against model M0 only if it is below 0.87 and as
strong evidence only if it is below 0.78. A period ratio below
0.71 indicates very strong evidence for model M1.

A similar comparison was made for models M2 and M0
(Figure 2(c)). The model for magnetic tube expansion is clearly
favored for observations of period ratios above unity. Model
M0 cannot be ruled out by the simple fact that r > 1. Positive
evidence for model M2 against model M0 exists for period ratio
measurements above 1.16. If r > 1.23, there is strong evidence
for model M2. A period ratio above 1.28 indicates very strong
evidence for model M2.

Finally, we have compared model M1 against model M2 in
view of observed data. Figure 2(d) shows that the evidence is
the same for both models if the period ratio is unity. Around
this value, there is a region, 0.96 < r < 1.06, in which no firm
conclusion can be established. Positive, strong, and very strong
evidence for M1 occur below 0.96, 0.87, and 0.80, respectively.
Positive, strong, and very strong evidence for M2 occur above
1.06, 1.15, and 1.21, respectively.

In our model comparison, σ = 0.08 has been selected so as to
clearly show the different regimes for the evidence. An increase
(decrease) of σ produces a decrease (increase) of any evidence.
The inference in Figure 1(a) for r = 0.91 with uncertainty of
σ = 0.04 falls into the region of positive evidence for hypothesis
M1. The inference in Figure 1(b) for r = 1.07 should have an
uncertainty of σ = 0.03 (close to the reported error) to be
considered done under positive evidence for hypothesis M2.

5. CONCLUSIONS

We have presented a simple and straightforward technique
to perform parameter inference and model comparison using

3
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the full posterior with respect to the rest of parameters

p(✓i|d) =
Z

p(✓|d)d✓1 . . . d✓i�1d✓i+1 . . . d✓N . (6)

The result provides us with all the information for model parameter ✓i available in the priors
and the data. This method also enables us to correctly propagate uncertainties from data to
inferred parameters.

We next specify the likelihood function and the priors. In what follows we assume the
observed data are given by d = (Lg, h), where both observed length-scales are normalized to
the wavelength. The unknowns are gathered in the vector ✓=(⇣, l/R). Under the assumption
that observations are corrupted with Gaussian noise and they are statistically independent, the
likelihood can be expressed as
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with Lsyn
g (✓) and hsyn(✓) given by Equations (3) and (4). Likewise, �2

Lg
and �2

h are the variances
associated to the Gaussian damping length and the height h, respectively.

The priors indicate our level of knowledge (ignorance) before considering the observed data.
We have adopted uniform prior distributions for both unknowns over given ranges, so that we can
write

p(✓i) =
1

✓max
i � ✓min

i

for ✓min
i  ✓  ✓max

i , (8)

and zero otherwise. For the minimum and maximum values the intervals ⇣ 2 [1, 20] and l/R 2
[0, 2] have been taken. This choice of priors expresses our belief that the unknown parameters are
constrained to those ranges, with all combinations being equally probable. We have verified that
our posteriors are insensitive to prior changes. This means that they are dominated by the
information contained in the data, that overwhelms the prior information.

The posterior is evaluated for di↵erent combinations of parameters using Bayes’ theorem.
Given that the number of model parameters is two, the computation of the marginal posteriors
using Eq. (6) can be safely done using a numerical quadrature. For this purpose, we have computed
the 1-dimensional integrals using an adaptive Gauss-Kronrod quadrature, which gives very good
precision.
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Figure 1. (a) Posterior distributions for η, under the density stratification model, for two values of the period ratio. (b) Posterior distributions for the magnetic tube
expansion, Γ, under the magnetic expansion model, for two values of the period ratio. The measured period ratio and the inferred median of the distribution, with
uncertainties given at the 68% credible interval are (a) r = 0.91 ± 0.04, η = 1.26+0.65

−0.59; r = 0.79 ± 0.03, η = 3.39+0.72
−0.64 and (b) r = 1.07 ± 0.04, Γ = 1.20+0.10

−0.12;
r = 1.38±0.04, Γ = 1.87+0.07

−0.07. The improved errors on r in the measurements of Verwichte et al. (2004) have been taken from Van Doorsselaere et al. (2007). Similar
errors are assigned to the mean values in the measurements by De Moortel & Brady (2007).

Both longitudinal stratification and magnetic tube expansion
have forward models that relate one observed quantity, the
period ratio P1/2P2, to one physical quantity to be inferred,
η or Γ.

3. BAYESIAN PARAMETER INFERENCE

To perform the inference using existing estimates for the
period ratio, we employ Bayes’ theorem (Bayes & Price 1763)

p(θ |D,M) = p(D|θ ,M)p(θ |M)∫
dθp(D|θ ,M)p(θ |M)

, (3)

which gives the solution to the inverse problem in terms of
the posterior probability distribution, p(θ |D,M), that describes
how probability is distributed among the possible values of the
unknown parameter, θ , given the data D and the assumed model
M. The function p(D|θ,M) is the likelihood of obtaining a
data realization actually observed as a function of the parameter
vector and provides a measure of how well the data are predicted
by the model. The prior probability p(θ |M) encodes any prior
information we might have on the model parameters without
taking into account the observed data. The denominator is the
evidence, an integral of the likelihood over the prior distribution.
This quantity plays no role in parameter inference, but will
become central in the model comparison described in Section 4.

3.1. Longitudinally Stratified Loops

For longitudinally stratified loops, model M1, the forward
problem, is given in Equation (1). To evaluate the likelihood,
we assume that the model is true. Then, the period ratio mea-
surement (r) will differ from the prediction (r1) because of mea-
surement uncertainties (e), so that r = r1 ± e. The probability
of obtaining the measured value is equal to the probability of
the error. Assuming Gaussian errors, the likelihood for model
M1 is then expressed in the following manner

p(r|η,M1) = 1√
2πσ

exp
[
− (r − r1)2

2σ 2

]
, (4)

with σ 2 the variance associated to the observed period ratio.
In the following we assign observed period ratio errors to the
standard deviation σ .

The prior indicates our level of knowledge (ignorance) before
considering the observed data. We have adopted a uniform prior
distribution for the unknown, η, over a given range, so that we
can write

p(η|M1) = 1
ηmax − ηmin

for ηmin ! η ! ηmax, (5)

and zero otherwise. We only consider loops with density
decreasing with height. We know from observations that
very large coronal loops with the apex height above
several atmospheric scale heights exist, so we consider the range
η ∈ [0, 8] in the prior above.

Parameter inference is next performed using Bayes’
theorem (3). We use period ratio measurements reported in
observations by Verwichte et al. (2004). We must note that
unambiguous identification of measured periods with particular
overtones is a difficult task. Early observations were limited to
the measurement of different periodicities at a single point with-
out spatial information (Verwichte et al. 2004). Even in the case
in which information at different cuts along the loops is avail-
able (De Moortel & Brady 2007), it is unclear how one should
assign those periods to theoretical overtones. As our Letter
aims at providing a method to perform parameter inference
and model comparison, we have considered period ratio values
discussed in the review by Andries et al. (2009), noting that the
reliability of the results is closely related to that of the adopted
assumptions and theoretical interpretations.

Figure 1(a) shows posterior probability distributions for η
computed using Equation (3) with likelihood and prior given
by Equations (4) and (5) for two period ratio measurements
by Verwichte et al. (2004). Well constrained distributions are
obtained. For the measured period ratios r ∼ 0.79 and r ∼ 0.91,
the inversion leads to density scale heights of H = 21 Mm and
H = 56 Mm, respectively, for a loop with a height at the apex
of L/π = 70 Mm.

3.2. Expanding Magnetic Loops

For expanding loops, model M2, the forward problem is given
in Equation (2). To evaluate the likelihood, we follow the same
procedure as above, which leads to

p(r|Γ,M2) = 1√
2πσ

exp
[
− (r − r2)2

2σ 2

]
. (6)
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Figure 1. (a) Posterior distributions for η, under the density stratification model, for two values of the period ratio. (b) Posterior distributions for the magnetic tube
expansion, Γ, under the magnetic expansion model, for two values of the period ratio. The measured period ratio and the inferred median of the distribution, with
uncertainties given at the 68% credible interval are (a) r = 0.91 ± 0.04, η = 1.26+0.65

−0.59; r = 0.79 ± 0.03, η = 3.39+0.72
−0.64 and (b) r = 1.07 ± 0.04, Γ = 1.20+0.10

−0.12;
r = 1.38±0.04, Γ = 1.87+0.07

−0.07. The improved errors on r in the measurements of Verwichte et al. (2004) have been taken from Van Doorsselaere et al. (2007). Similar
errors are assigned to the mean values in the measurements by De Moortel & Brady (2007).

Both longitudinal stratification and magnetic tube expansion
have forward models that relate one observed quantity, the
period ratio P1/2P2, to one physical quantity to be inferred,
η or Γ.

3. BAYESIAN PARAMETER INFERENCE

To perform the inference using existing estimates for the
period ratio, we employ Bayes’ theorem (Bayes & Price 1763)

p(θ |D,M) = p(D|θ ,M)p(θ |M)∫
dθp(D|θ ,M)p(θ |M)

, (3)

which gives the solution to the inverse problem in terms of
the posterior probability distribution, p(θ |D,M), that describes
how probability is distributed among the possible values of the
unknown parameter, θ , given the data D and the assumed model
M. The function p(D|θ,M) is the likelihood of obtaining a
data realization actually observed as a function of the parameter
vector and provides a measure of how well the data are predicted
by the model. The prior probability p(θ |M) encodes any prior
information we might have on the model parameters without
taking into account the observed data. The denominator is the
evidence, an integral of the likelihood over the prior distribution.
This quantity plays no role in parameter inference, but will
become central in the model comparison described in Section 4.

3.1. Longitudinally Stratified Loops

For longitudinally stratified loops, model M1, the forward
problem, is given in Equation (1). To evaluate the likelihood,
we assume that the model is true. Then, the period ratio mea-
surement (r) will differ from the prediction (r1) because of mea-
surement uncertainties (e), so that r = r1 ± e. The probability
of obtaining the measured value is equal to the probability of
the error. Assuming Gaussian errors, the likelihood for model
M1 is then expressed in the following manner

p(r|η,M1) = 1√
2πσ

exp
[
− (r − r1)2

2σ 2

]
, (4)

with σ 2 the variance associated to the observed period ratio.
In the following we assign observed period ratio errors to the
standard deviation σ .

The prior indicates our level of knowledge (ignorance) before
considering the observed data. We have adopted a uniform prior
distribution for the unknown, η, over a given range, so that we
can write

p(η|M1) = 1
ηmax − ηmin

for ηmin ! η ! ηmax, (5)

and zero otherwise. We only consider loops with density
decreasing with height. We know from observations that
very large coronal loops with the apex height above
several atmospheric scale heights exist, so we consider the range
η ∈ [0, 8] in the prior above.

Parameter inference is next performed using Bayes’
theorem (3). We use period ratio measurements reported in
observations by Verwichte et al. (2004). We must note that
unambiguous identification of measured periods with particular
overtones is a difficult task. Early observations were limited to
the measurement of different periodicities at a single point with-
out spatial information (Verwichte et al. 2004). Even in the case
in which information at different cuts along the loops is avail-
able (De Moortel & Brady 2007), it is unclear how one should
assign those periods to theoretical overtones. As our Letter
aims at providing a method to perform parameter inference
and model comparison, we have considered period ratio values
discussed in the review by Andries et al. (2009), noting that the
reliability of the results is closely related to that of the adopted
assumptions and theoretical interpretations.

Figure 1(a) shows posterior probability distributions for η
computed using Equation (3) with likelihood and prior given
by Equations (4) and (5) for two period ratio measurements
by Verwichte et al. (2004). Well constrained distributions are
obtained. For the measured period ratios r ∼ 0.79 and r ∼ 0.91,
the inversion leads to density scale heights of H = 21 Mm and
H = 56 Mm, respectively, for a loop with a height at the apex
of L/π = 70 Mm.

3.2. Expanding Magnetic Loops

For expanding loops, model M2, the forward problem is given
in Equation (2). To evaluate the likelihood, we follow the same
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exp
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We also adopt a uniform prior distribution for the unknown
Γ, so that we can write

p(Γ|M2) = 1
Γmax − Γmin

for Γmin ! Γ ! Γmax, (7)

and zero otherwise. We consider Γ ∈ [1, 2.5].
Figure 1(b) shows posterior probability distributions for Γ

computed using Equation (3) with likelihood and prior given by
Equations (6) and (7) for two period ratio measurements. Again,
well constrained distributions are obtained. Andries et al. (2009)
discuss period ratio measurements in Table 1 by De Moortel &
Brady (2007). Assuming that either the most power is in the
fundamental mode or in the first overtone, mean values for
the period ratio of r ∼ 1.07 and r ∼ 1.38 are obtained. For
those values, the inversion leads to tube expansion factors that
are compatible with the estimates by Klimchuk (2000) and
Watko & Klimchuk (2000). Note, however, that, according to
Figure 1(b), a period ratio of r ∼ 1.38 requires an expansion of
the tube by a factor of Γ ∼ 1.85, while observations by Watko
& Klimchuk (2000) seem to indicate that in only very few cases
does this parameter approach or exceed a value of 2.

For both theoretical models, the Bayesian framework makes
use of all the available information in a consistent manner and
enables us to consistently propagate errors from observations to
inferred parameters.

4. BAYESIAN MODEL COMPARISON

Parameter inference was performed under the hypothesis that
observed period ratios are the effect of either density stratifica-
tion or magnetic tube expansion. The probability distributions in
Figure 1 are conditional on the specific models used to explain
the observations. The Bayesian framework enables us to present
different models to the same data and assess in a quantitative
manner which one is favored. We have compared three mod-
els: M0 for a uniform density and magnetic field strength tube,
M1 for a longitudinally stratified loop, and M2 for a expanding
magnetic loop.

As model M0 predicts a period ratio of one, regardless of η
or Γ, we can write

p(r|M0) = 1√
2πσ

exp
[
− (r − 1)2

2σ 2

]
, (8)

for the likelihood in this case. Note that p(r|M0) =
p(r|η,M0) = p(r|Γ,M0).

To determine the plausibility of models M1 and M2 between
them and with respect to model M0, we evaluate the posterior
probabilities to ascertain the relative merits of two models, Mi
and Mj. This is done by applying Bayes’ theorem (Equation (3))
to the two models and considering posterior ratios of the form
(Jeffreys 1961)

p(Mi |r)
p(Mj |r)

= p(r|Mi)
p(r|Mj )

p(Mi)
p(Mj )

. (9)

The first ratio on the right-hand side is the Bayes factor. It
expresses how well the observed data are predicted by model
Mi, compared to model Mj. The second ratio, the prior odds
ratio, measures how much our initial beliefs favored Mi over Mj,
before considering the data. As we have no particular a priori
preference for one model over the other, before considering the
data, we take p(Mi) = p(Mj ) = 1/2. Our assessment of the

plausibility of models is then based on the computation of the
Bayes factor of Mi against Mj given by

BFij = p(r|Mi)
p(r|Mj )

. (10)

In model selection, we are interested in the most proba-
ble model, independently of the parameters, i.e., we should
marginalize out all parameters. This is achieved by performing
an integral of the likelihood over the full parameter space. The
marginal likelihood for a given model Mi is then

p(r|Mi) =
∫ θmax

θmin
p(r, θ |Mi)dθ =

∫ θmax

θmin
p(r|θ,Mi)p(θ |Mi)dθ,

(11)
where θ ∈ [θmin, θmax] represents the particular parameter of
the model and we have used the product rule to expand the
probability of r and θ , given model Mi.

Figure 2(a) displays the marginal likelihoods for the three
considered models. For a given observed period ratio, the
plausibility of one model over the other is given by the ratio
of these two quantities at the measured period ratio r. The
uniform model has a marginal likelihood that is maximum at
one. The model with density stratification is clearly favored for
observations of period ratios below unity. Figure 2(b) quantifies
the relative performance of models M1 and M0 by computing the
Bayes factor. The lower r, the more plausible M1 is against M0.
Jeffreys’ scale (Jeffreys 1961; Kass & Raftery 1995) assigns
different levels of evidence to the values of the Bayes factor
in natural logarithm units. They are shown using different
darkening options in Figures 2(b)–(d). According to Figure 2(b),
and given the assumed uncertainty of σ = 0.08, a period ratio
measurement should be considered as positive evidence for
model M1 against model M0 only if it is below 0.87 and as
strong evidence only if it is below 0.78. A period ratio below
0.71 indicates very strong evidence for model M1.

A similar comparison was made for models M2 and M0
(Figure 2(c)). The model for magnetic tube expansion is clearly
favored for observations of period ratios above unity. Model
M0 cannot be ruled out by the simple fact that r > 1. Positive
evidence for model M2 against model M0 exists for period ratio
measurements above 1.16. If r > 1.23, there is strong evidence
for model M2. A period ratio above 1.28 indicates very strong
evidence for model M2.

Finally, we have compared model M1 against model M2 in
view of observed data. Figure 2(d) shows that the evidence is
the same for both models if the period ratio is unity. Around
this value, there is a region, 0.96 < r < 1.06, in which no firm
conclusion can be established. Positive, strong, and very strong
evidence for M1 occur below 0.96, 0.87, and 0.80, respectively.
Positive, strong, and very strong evidence for M2 occur above
1.06, 1.15, and 1.21, respectively.

In our model comparison, σ = 0.08 has been selected so as to
clearly show the different regimes for the evidence. An increase
(decrease) of σ produces a decrease (increase) of any evidence.
The inference in Figure 1(a) for r = 0.91 with uncertainty of
σ = 0.04 falls into the region of positive evidence for hypothesis
M1. The inference in Figure 1(b) for r = 1.07 should have an
uncertainty of σ = 0.03 (close to the reported error) to be
considered done under positive evidence for hypothesis M2.

5. CONCLUSIONS

We have presented a simple and straightforward technique
to perform parameter inference and model comparison using
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We also adopt a uniform prior distribution for the unknown
Γ, so that we can write

p(Γ|M2) = 1
Γmax − Γmin

for Γmin ! Γ ! Γmax, (7)

and zero otherwise. We consider Γ ∈ [1, 2.5].
Figure 1(b) shows posterior probability distributions for Γ

computed using Equation (3) with likelihood and prior given by
Equations (6) and (7) for two period ratio measurements. Again,
well constrained distributions are obtained. Andries et al. (2009)
discuss period ratio measurements in Table 1 by De Moortel &
Brady (2007). Assuming that either the most power is in the
fundamental mode or in the first overtone, mean values for
the period ratio of r ∼ 1.07 and r ∼ 1.38 are obtained. For
those values, the inversion leads to tube expansion factors that
are compatible with the estimates by Klimchuk (2000) and
Watko & Klimchuk (2000). Note, however, that, according to
Figure 1(b), a period ratio of r ∼ 1.38 requires an expansion of
the tube by a factor of Γ ∼ 1.85, while observations by Watko
& Klimchuk (2000) seem to indicate that in only very few cases
does this parameter approach or exceed a value of 2.

For both theoretical models, the Bayesian framework makes
use of all the available information in a consistent manner and
enables us to consistently propagate errors from observations to
inferred parameters.

4. BAYESIAN MODEL COMPARISON

Parameter inference was performed under the hypothesis that
observed period ratios are the effect of either density stratifica-
tion or magnetic tube expansion. The probability distributions in
Figure 1 are conditional on the specific models used to explain
the observations. The Bayesian framework enables us to present
different models to the same data and assess in a quantitative
manner which one is favored. We have compared three mod-
els: M0 for a uniform density and magnetic field strength tube,
M1 for a longitudinally stratified loop, and M2 for a expanding
magnetic loop.

As model M0 predicts a period ratio of one, regardless of η
or Γ, we can write

p(r|M0) = 1√
2πσ

exp
[
− (r − 1)2

2σ 2

]
, (8)

for the likelihood in this case. Note that p(r|M0) =
p(r|η,M0) = p(r|Γ,M0).

To determine the plausibility of models M1 and M2 between
them and with respect to model M0, we evaluate the posterior
probabilities to ascertain the relative merits of two models, Mi
and Mj. This is done by applying Bayes’ theorem (Equation (3))
to the two models and considering posterior ratios of the form
(Jeffreys 1961)

p(Mi |r)
p(Mj |r)

= p(r|Mi)
p(r|Mj )

p(Mi)
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. (9)

The first ratio on the right-hand side is the Bayes factor. It
expresses how well the observed data are predicted by model
Mi, compared to model Mj. The second ratio, the prior odds
ratio, measures how much our initial beliefs favored Mi over Mj,
before considering the data. As we have no particular a priori
preference for one model over the other, before considering the
data, we take p(Mi) = p(Mj ) = 1/2. Our assessment of the

plausibility of models is then based on the computation of the
Bayes factor of Mi against Mj given by

BFij = p(r|Mi)
p(r|Mj )

. (10)

In model selection, we are interested in the most proba-
ble model, independently of the parameters, i.e., we should
marginalize out all parameters. This is achieved by performing
an integral of the likelihood over the full parameter space. The
marginal likelihood for a given model Mi is then

p(r|Mi) =
∫ θmax
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p(r, θ |Mi)dθ =

∫ θmax

θmin
p(r|θ,Mi)p(θ |Mi)dθ,

(11)
where θ ∈ [θmin, θmax] represents the particular parameter of
the model and we have used the product rule to expand the
probability of r and θ , given model Mi.

Figure 2(a) displays the marginal likelihoods for the three
considered models. For a given observed period ratio, the
plausibility of one model over the other is given by the ratio
of these two quantities at the measured period ratio r. The
uniform model has a marginal likelihood that is maximum at
one. The model with density stratification is clearly favored for
observations of period ratios below unity. Figure 2(b) quantifies
the relative performance of models M1 and M0 by computing the
Bayes factor. The lower r, the more plausible M1 is against M0.
Jeffreys’ scale (Jeffreys 1961; Kass & Raftery 1995) assigns
different levels of evidence to the values of the Bayes factor
in natural logarithm units. They are shown using different
darkening options in Figures 2(b)–(d). According to Figure 2(b),
and given the assumed uncertainty of σ = 0.08, a period ratio
measurement should be considered as positive evidence for
model M1 against model M0 only if it is below 0.87 and as
strong evidence only if it is below 0.78. A period ratio below
0.71 indicates very strong evidence for model M1.

A similar comparison was made for models M2 and M0
(Figure 2(c)). The model for magnetic tube expansion is clearly
favored for observations of period ratios above unity. Model
M0 cannot be ruled out by the simple fact that r > 1. Positive
evidence for model M2 against model M0 exists for period ratio
measurements above 1.16. If r > 1.23, there is strong evidence
for model M2. A period ratio above 1.28 indicates very strong
evidence for model M2.

Finally, we have compared model M1 against model M2 in
view of observed data. Figure 2(d) shows that the evidence is
the same for both models if the period ratio is unity. Around
this value, there is a region, 0.96 < r < 1.06, in which no firm
conclusion can be established. Positive, strong, and very strong
evidence for M1 occur below 0.96, 0.87, and 0.80, respectively.
Positive, strong, and very strong evidence for M2 occur above
1.06, 1.15, and 1.21, respectively.

In our model comparison, σ = 0.08 has been selected so as to
clearly show the different regimes for the evidence. An increase
(decrease) of σ produces a decrease (increase) of any evidence.
The inference in Figure 1(a) for r = 0.91 with uncertainty of
σ = 0.04 falls into the region of positive evidence for hypothesis
M1. The inference in Figure 1(b) for r = 1.07 should have an
uncertainty of σ = 0.03 (close to the reported error) to be
considered done under positive evidence for hypothesis M2.
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We also adopt a uniform prior distribution for the unknown
Γ, so that we can write

p(Γ|M2) = 1
Γmax − Γmin

for Γmin ! Γ ! Γmax, (7)

and zero otherwise. We consider Γ ∈ [1, 2.5].
Figure 1(b) shows posterior probability distributions for Γ

computed using Equation (3) with likelihood and prior given by
Equations (6) and (7) for two period ratio measurements. Again,
well constrained distributions are obtained. Andries et al. (2009)
discuss period ratio measurements in Table 1 by De Moortel &
Brady (2007). Assuming that either the most power is in the
fundamental mode or in the first overtone, mean values for
the period ratio of r ∼ 1.07 and r ∼ 1.38 are obtained. For
those values, the inversion leads to tube expansion factors that
are compatible with the estimates by Klimchuk (2000) and
Watko & Klimchuk (2000). Note, however, that, according to
Figure 1(b), a period ratio of r ∼ 1.38 requires an expansion of
the tube by a factor of Γ ∼ 1.85, while observations by Watko
& Klimchuk (2000) seem to indicate that in only very few cases
does this parameter approach or exceed a value of 2.

For both theoretical models, the Bayesian framework makes
use of all the available information in a consistent manner and
enables us to consistently propagate errors from observations to
inferred parameters.

4. BAYESIAN MODEL COMPARISON

Parameter inference was performed under the hypothesis that
observed period ratios are the effect of either density stratifica-
tion or magnetic tube expansion. The probability distributions in
Figure 1 are conditional on the specific models used to explain
the observations. The Bayesian framework enables us to present
different models to the same data and assess in a quantitative
manner which one is favored. We have compared three mod-
els: M0 for a uniform density and magnetic field strength tube,
M1 for a longitudinally stratified loop, and M2 for a expanding
magnetic loop.

As model M0 predicts a period ratio of one, regardless of η
or Γ, we can write

p(r|M0) = 1√
2πσ

exp
[
− (r − 1)2

2σ 2

]
, (8)

for the likelihood in this case. Note that p(r|M0) =
p(r|η,M0) = p(r|Γ,M0).

To determine the plausibility of models M1 and M2 between
them and with respect to model M0, we evaluate the posterior
probabilities to ascertain the relative merits of two models, Mi
and Mj. This is done by applying Bayes’ theorem (Equation (3))
to the two models and considering posterior ratios of the form
(Jeffreys 1961)

p(Mi |r)
p(Mj |r)

= p(r|Mi)
p(r|Mj )

p(Mi)
p(Mj )

. (9)

The first ratio on the right-hand side is the Bayes factor. It
expresses how well the observed data are predicted by model
Mi, compared to model Mj. The second ratio, the prior odds
ratio, measures how much our initial beliefs favored Mi over Mj,
before considering the data. As we have no particular a priori
preference for one model over the other, before considering the
data, we take p(Mi) = p(Mj ) = 1/2. Our assessment of the

plausibility of models is then based on the computation of the
Bayes factor of Mi against Mj given by

BFij = p(r|Mi)
p(r|Mj )

. (10)

In model selection, we are interested in the most proba-
ble model, independently of the parameters, i.e., we should
marginalize out all parameters. This is achieved by performing
an integral of the likelihood over the full parameter space. The
marginal likelihood for a given model Mi is then

p(r|Mi) =
∫ θmax

θmin
p(r, θ |Mi)dθ =

∫ θmax

θmin
p(r|θ,Mi)p(θ |Mi)dθ,

(11)
where θ ∈ [θmin, θmax] represents the particular parameter of
the model and we have used the product rule to expand the
probability of r and θ , given model Mi.

Figure 2(a) displays the marginal likelihoods for the three
considered models. For a given observed period ratio, the
plausibility of one model over the other is given by the ratio
of these two quantities at the measured period ratio r. The
uniform model has a marginal likelihood that is maximum at
one. The model with density stratification is clearly favored for
observations of period ratios below unity. Figure 2(b) quantifies
the relative performance of models M1 and M0 by computing the
Bayes factor. The lower r, the more plausible M1 is against M0.
Jeffreys’ scale (Jeffreys 1961; Kass & Raftery 1995) assigns
different levels of evidence to the values of the Bayes factor
in natural logarithm units. They are shown using different
darkening options in Figures 2(b)–(d). According to Figure 2(b),
and given the assumed uncertainty of σ = 0.08, a period ratio
measurement should be considered as positive evidence for
model M1 against model M0 only if it is below 0.87 and as
strong evidence only if it is below 0.78. A period ratio below
0.71 indicates very strong evidence for model M1.

A similar comparison was made for models M2 and M0
(Figure 2(c)). The model for magnetic tube expansion is clearly
favored for observations of period ratios above unity. Model
M0 cannot be ruled out by the simple fact that r > 1. Positive
evidence for model M2 against model M0 exists for period ratio
measurements above 1.16. If r > 1.23, there is strong evidence
for model M2. A period ratio above 1.28 indicates very strong
evidence for model M2.

Finally, we have compared model M1 against model M2 in
view of observed data. Figure 2(d) shows that the evidence is
the same for both models if the period ratio is unity. Around
this value, there is a region, 0.96 < r < 1.06, in which no firm
conclusion can be established. Positive, strong, and very strong
evidence for M1 occur below 0.96, 0.87, and 0.80, respectively.
Positive, strong, and very strong evidence for M2 occur above
1.06, 1.15, and 1.21, respectively.

In our model comparison, σ = 0.08 has been selected so as to
clearly show the different regimes for the evidence. An increase
(decrease) of σ produces a decrease (increase) of any evidence.
The inference in Figure 1(a) for r = 0.91 with uncertainty of
σ = 0.04 falls into the region of positive evidence for hypothesis
M1. The inference in Figure 1(b) for r = 1.07 should have an
uncertainty of σ = 0.03 (close to the reported error) to be
considered done under positive evidence for hypothesis M2.
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We have presented a simple and straightforward technique
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Figure 2. (a) Marginal likelihoods computed using Equation (11) for models M0, M1 and M2 as a function of the data. (b)–(d) Bayes factors computed using
Equation (10) for the model comparisons between M1 over M0, M2 over M0, and M1 over M2. In (b)–(d), white regions indicate evidence not worth more than a bare
mention (2 logeBF ∈ [0, 2]); PE: positive evidence (2 logeBF ∈ [2, 6]); SE: strong evidence (2 logeBF ∈ [6, 10]); VSE: very strong evidence (2 logeBF > 10).
Uniform priors in the ranges η ∈ [0, 8] and Γ ∈ [1, 2.5] have been taken. In all figures σ = 0.08.

period ratios of kink oscillations in the Bayesian framework.
Parameter inference enables us to obtain estimates for the
coronal density scale height and the magnetic loop expansion,
using all the available information and with correctly propagated
uncertainties. Density scale height estimates are compatible
with previous studies. Magnetic tube expansion factors are
compatible with the estimates by Klimchuk (2000) and Watko
& Klimchuk (2000). Even if Equations (1) and (2) imply well-
posed inversion problems from a mathematical point of view,
the unknown parameters cannot be obtained uniquely due to
the uncertainties associated to observed data. The Bayesian
framework enables us to consistently deal with this problem.

Bayesian model comparison enables us to assess the plau-
sibility of the inferences, which are conditional on theoretical
models. Deviations of the period ratio below (above) unity do
not necessarily imply density stratification (tube expansion) to
be preferred in front of the null hypothesis. The degree of evi-
dence for the two theories so far invoked can be quantitatively
assessed with the use of Bayes factors, to precisely decide which
one of the two hypotheses is more plausible, for a given mea-
sured period ratio and the associated uncertainty.

Our analysis provides a simple and easy to use method to
perform inference and model comparison in the presence of
incomplete and uncertain information. Measured period ratios
and their uncertainties determine the strength of the evidence
in favor of a particular hypothesis and, therefore, the support of
the performed inferences.

The Bayesian formalism for inference and model comparison
is the only fully correct way we have to obtain information
about physical parameters and the plausibility of hypotheses

from observations (see, e.g., Trotta 2008; von Toussaint 2011)
under incomplete and uncertain information. Arregui & Asensio
Ramos (2011) performed the first Bayesian parameter inference
in coronal seismology. This Letter presents the first application
of Bayesian techniques to model comparison. When analytical
forward problems are available, both parameter inference and
model comparison reduce to a simple and straightforward
evaluation of the marginal posteriors and the Bayes factors,
which can be obtained by solving simple integrals. The methods
outlined in this Letter can be directly applied to most of the
seismology inversion problems in which other physical effects
and parameters are involved. For instance, additional effects
that influence period ratios could be compared to the already
considered hypotheses.
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Figure 2. (a) Marginal likelihoods computed using Equation (11) for models M0, M1 and M2 as a function of the data. (b)–(d) Bayes factors computed using
Equation (10) for the model comparisons between M1 over M0, M2 over M0, and M1 over M2. In (b)–(d), white regions indicate evidence not worth more than a bare
mention (2 logeBF ∈ [0, 2]); PE: positive evidence (2 logeBF ∈ [2, 6]); SE: strong evidence (2 logeBF ∈ [6, 10]); VSE: very strong evidence (2 logeBF > 10).
Uniform priors in the ranges η ∈ [0, 8] and Γ ∈ [1, 2.5] have been taken. In all figures σ = 0.08.
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Parameter inference enables us to obtain estimates for the
coronal density scale height and the magnetic loop expansion,
using all the available information and with correctly propagated
uncertainties. Density scale height estimates are compatible
with previous studies. Magnetic tube expansion factors are
compatible with the estimates by Klimchuk (2000) and Watko
& Klimchuk (2000). Even if Equations (1) and (2) imply well-
posed inversion problems from a mathematical point of view,
the unknown parameters cannot be obtained uniquely due to
the uncertainties associated to observed data. The Bayesian
framework enables us to consistently deal with this problem.

Bayesian model comparison enables us to assess the plau-
sibility of the inferences, which are conditional on theoretical
models. Deviations of the period ratio below (above) unity do
not necessarily imply density stratification (tube expansion) to
be preferred in front of the null hypothesis. The degree of evi-
dence for the two theories so far invoked can be quantitatively
assessed with the use of Bayes factors, to precisely decide which
one of the two hypotheses is more plausible, for a given mea-
sured period ratio and the associated uncertainty.

Our analysis provides a simple and easy to use method to
perform inference and model comparison in the presence of
incomplete and uncertain information. Measured period ratios
and their uncertainties determine the strength of the evidence
in favor of a particular hypothesis and, therefore, the support of
the performed inferences.

The Bayesian formalism for inference and model comparison
is the only fully correct way we have to obtain information
about physical parameters and the plausibility of hypotheses

from observations (see, e.g., Trotta 2008; von Toussaint 2011)
under incomplete and uncertain information. Arregui & Asensio
Ramos (2011) performed the first Bayesian parameter inference
in coronal seismology. This Letter presents the first application
of Bayesian techniques to model comparison. When analytical
forward problems are available, both parameter inference and
model comparison reduce to a simple and straightforward
evaluation of the marginal posteriors and the Bayes factors,
which can be obtained by solving simple integrals. The methods
outlined in this Letter can be directly applied to most of the
seismology inversion problems in which other physical effects
and parameters are involved. For instance, additional effects
that influence period ratios could be compared to the already
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Figure 2. (a) Marginal likelihoods computed using Equation (11) for models M0, M1 and M2 as a function of the data. (b)–(d) Bayes factors computed using
Equation (10) for the model comparisons between M1 over M0, M2 over M0, and M1 over M2. In (b)–(d), white regions indicate evidence not worth more than a bare
mention (2 logeBF ∈ [0, 2]); PE: positive evidence (2 logeBF ∈ [2, 6]); SE: strong evidence (2 logeBF ∈ [6, 10]); VSE: very strong evidence (2 logeBF > 10).
Uniform priors in the ranges η ∈ [0, 8] and Γ ∈ [1, 2.5] have been taken. In all figures σ = 0.08.

period ratios of kink oscillations in the Bayesian framework.
Parameter inference enables us to obtain estimates for the
coronal density scale height and the magnetic loop expansion,
using all the available information and with correctly propagated
uncertainties. Density scale height estimates are compatible
with previous studies. Magnetic tube expansion factors are
compatible with the estimates by Klimchuk (2000) and Watko
& Klimchuk (2000). Even if Equations (1) and (2) imply well-
posed inversion problems from a mathematical point of view,
the unknown parameters cannot be obtained uniquely due to
the uncertainties associated to observed data. The Bayesian
framework enables us to consistently deal with this problem.

Bayesian model comparison enables us to assess the plau-
sibility of the inferences, which are conditional on theoretical
models. Deviations of the period ratio below (above) unity do
not necessarily imply density stratification (tube expansion) to
be preferred in front of the null hypothesis. The degree of evi-
dence for the two theories so far invoked can be quantitatively
assessed with the use of Bayes factors, to precisely decide which
one of the two hypotheses is more plausible, for a given mea-
sured period ratio and the associated uncertainty.

Our analysis provides a simple and easy to use method to
perform inference and model comparison in the presence of
incomplete and uncertain information. Measured period ratios
and their uncertainties determine the strength of the evidence
in favor of a particular hypothesis and, therefore, the support of
the performed inferences.

The Bayesian formalism for inference and model comparison
is the only fully correct way we have to obtain information
about physical parameters and the plausibility of hypotheses

from observations (see, e.g., Trotta 2008; von Toussaint 2011)
under incomplete and uncertain information. Arregui & Asensio
Ramos (2011) performed the first Bayesian parameter inference
in coronal seismology. This Letter presents the first application
of Bayesian techniques to model comparison. When analytical
forward problems are available, both parameter inference and
model comparison reduce to a simple and straightforward
evaluation of the marginal posteriors and the Bayes factors,
which can be obtained by solving simple integrals. The methods
outlined in this Letter can be directly applied to most of the
seismology inversion problems in which other physical effects
and parameters are involved. For instance, additional effects
that influence period ratios could be compared to the already
considered hypotheses.
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Model 1 against Model 2 

Different levels of evidence for density stratification and magnetic tube expansion



Example #5

Application of the three levels of Bayesian 
inference to the problem of the cross-field 

density structure



The damping formula
 Sakurai (1991); Goossens et al. (1995); Tirry & Goossens (1996); Ruderman & Roberts (2002)

⌧d
P

= F
R

l

⇣ + 1

⇣ � 1
.

Analytical expression for the period and damping by resonant absorption can be 
obtained under the thin tube and thin boundary approximations  ( R/L << 1; l/R<<1)  

F numerical factor
depends on the radial density profile

P = ⌧Ai
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Alternative density models
S:  sinusoidal      L: linear      P: parabolic⇣ =
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Classic Inversion Result
Inversion of: density contrast, transverse inhomogeneity,  and Alfvén travel time, 
using observed period and damping 

Soler et al. (2014)

1D solution space for loop models                                                                                            
that reproduce observations

Inversion for 3 alternative density models 
seems to lead to significant differences

Arregui et al. (2007)



Infer the unknown physical parameters from observed oscillation properties:

Parameter inferenceLEVEL 1

p({⌧Ai, ⇣, l/R}|{P, ⌧d},M) / p({p, ⌧d}|{⌧Ai, ⇣, l/R},M)p({⌧Ai, ⇣, l/R},M)

Posterior Likelihood Prior

Marginalise

p(⌧Ai|{P, ⌧d},M) =

Z
p({⌧Ai, ⇣, l/R}|{P, ⌧d},M) d⇣ d(l/R)

p(⇣|{P, ⌧d},M) =

Z
p({⌧Ai, ⇣, l/R}|{P, ⌧d},M) d⌧Ai d(l/R)

p(l/R|{P, ⌧d},M) =

Z
p({⌧Ai, ⇣, l/R}|{P, ⌧d},M) d⌧Ai d⇣

Bayes Theorem



What we really do
Conditional probability and marginal posteriors

Arregui & Asensio Ramos (2014)

Joint probability of a and b, given c     p(a,b| c)c = a · b

p(b|a,c): probability of b, given a and c

p(a|b,c): probability of a, given b and c

p(a|c): probability of a, given c

p(b|c): probability of b, given c

All animals are equal, 
but some animals are more equal than others

George Orwell,  Animal Farm (1945)



Sinusoidal Linear Parabolic
Solid:  TTTB approximations - Dashed: numerical



Solid:  sinusoidal - Dotted: linear - Dashed parabolic 

TTTB Numerical



Numerical results lead to basically the same conclusion

The adopted density model does not seem to influence that much the inference result



Compare the plausibility of alternative models to explain observed data 

Model comparisonLEVEL 2

Evidence
0-2 Minimal Evidence (ME)

2-6 Positive Evidence (PE)

6-10 Strong Evidence (SE)

> 10 Very Strong Evidence (VSE)

2 loge BF 

Quantitative model comparison:  compute Bayes factors as a function of measured  
period and damping time and use Jeffreys’ scale  Jeffreys(61); Kass & Raftery(95)

– 6 –

To determine the plausibility of models M1 and M2 between them and with respect to model
M0, we evaluate the posterior probabilities to ascertain the relative merits of two models, Mi and
Mj. This is done by applying Bayes’ theorem (Eq. ??) to the two models and considering
posterior ratios of the form (?)

p(Mi|d)
p(Mj|d)

=
p(d|Mi)
p(d|Mj)

p(Mi)
p(Mj)

. (9)

The first ratio on the right-hand side is the Bayes factor. It expresses how well the observed
data are predicted by model Mi, compared to model Mj. The second ratio, the prior odds ratio,
measures how much our initial beliefs favored Mi over Mj, before considering the data. As we
have no particular a priori preference for one model over the other, before considering the data,
we take p(Mi) = p(Mj) = 1/2. Our assessment of the plausibility of models is then based on the
computation of the Bayes factor of Mi against Mj given by

BFi j =
p(r|Mi)
p(r|Mj)

. (10)

In model selection, we are interested in the most probable model, independently of the param-
eters, i.e., we should marginalise out all parameters. This is achieved by performing an integral of
the likelihood over the full parameter space. The marginal likelihood for a given model Mi is then

p(r|Mi) =
Z ✓max

✓min
p(r, ✓|Mi)d✓ =

Z ✓max

✓min
p(r|✓,Mi)p(✓|Mi)d✓, (11)

where ✓ 2 [✓min, ✓max] represents the particular parameter of the model and we have used the
product rule to expand the probability of r and ✓, given model Mi.

Figure ??a displays the marginal likelihoods for the three considered models. For a given
observed period ratio, the plausibility of one model over the other is given by the ratio of these
two quantities at the measured period ratio r. The uniform model has a marginal likelihood that
is maximum at one. The model with density stratification is clearly favored for observations of
period ratios below unity. Figure ??b quantifies the relative performance of models M1 and M0

by computing the Bayes factor. The lower r, the more plausible M1 is against M0. Je↵reys’ scale
(??) assigns di↵erent levels of evidence to the values of the Bayes factor in natural logarithm units.
They are shown using di↵erent darkening options in Figures ??b-d. According to Figure ??b, and
given the assumed uncertainty of � = 0.08, a period ratio measurement should be considered as
positive evidence for model M1 against model M0 only if it is below 0.87. As strong evidence, only
if it is below 0.78. A period ratio below 0.71 indicates very strong evidence for model M1.

A similar comparison was made for models M2 and M0 (Figure ??c). The model for magnetic
tube expansion is clearly favored for observations of period ratios above unity. Model M0 cannot

Posterior ratio for two competing models 

A priori equally probable models > Bayes factors BFij =
p(d|Mi)

p(d|Mj)



p(MS|d)
Example model evidence linear vs. sinusoidal

parabolic vs. sinusoidal linear vs. parabolic
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Figure 8. Contour plots of the regions with di↵erent levels of evidence according to Bayes factor values from the comparison between alternative density models
in the two-dimensional observational parameter space (P, ⌧d). Top row panels correspond to the analysis using TTTB forward solutions. Bottom row panels
correspond to the analysis using numerical forward solutions. The density models being compared are: (a) and (d): sinusoidal vs. linear; (b) and (e): sinusoidal
vs. parabolic; and (c) and (f): linear vs. parabolic.

riod and damping time values. The calculation already takes
into account the uncertainty on the measured wave proper-
ties. We see that certain combinations of period and damping
time are more plausible than others. This means that when
performing the integral in Eq. (10), summing up all the possi-
ble parameter combinations that could produce the observed
data, those combinations have a larger marginal likelihood.
The calculation requires the use of that particular model, as-
sumed to be true, the selection of particular values for the
uncertainty on the data, and the integral of the product of the
likelihood function with the prior over the assumed ranges for
all parameters, hence all the available information is used in a
consistent way. A similar calculation was carried out for the
remaining linear and parabolic density models, M

L and M

P.
Once this is done, Bayes factor can be computed considering
ratios as given by Eq. (13) and the relative plausibility of one
model against another can be assessed.

Figure 8 shows the obtained results. Each panel displays
contours for the regions in period and damping time space
for which the evidence for one particular model against an-
other alternative reaches a given level of evidence. These lev-
els are based on the corresponding values of 2 log(BF

i j) and
the associated amount of evidence according the the Kass &
Raftery (1995) table. Regions in white indicate period and
damping time combinations for which minimal evidence is
obtained, hence the result of the model comparison is incon-
clusive. Then, di↵erent levels of grey shading point to re-
gions in which positive, strong, and very strong evidence is
obtained, with the level of evidence increasing with the dark-
ening. The top row panels correspond to results in which
the TTTB approximations to the forward solutions have been
used. The bottom row panels correspond to results in which
numerical forward solutions have been employed.

Considering first model comparison results under the TTTB
approximations, Fig. 8a shows the regions with di↵erent lev-
els of evidence for the comparison between the sinusoidal
and the linear profiles. Note that by construction, regions

in the observed parameter space where BF

i j and BF

ji reach
the di↵erent levels of evidence are mutually exclusive, since
log(BF

i j) = � log(BF

ji), and cannot overlap. In the com-
parison between the sinusoidal and linear profiles only BF

LP

reaches significantly positive values, with the evidence being
positive, strong, and very strong. This means that the evi-
dence supports the linear density model instead of the sinu-
soidal density model. However, the regions where this occurs
correspond to combinations with short damping time scale, in
comparison to the period (see Fig. 8a). A similar conclusion
can be reached in the comparison between the sinusoidal and
parabolic density models (see Fig. 8b) and the comparison
between the linear and parabolic density models (see Fig. 8c).
In the first case, we obtain positive and strong evidence for
the parabolic profile. In the second case, the evidence sup-
ports the linear density model instead of the parabolic profile,
with positive, strong, and very strong evidence. In both cases,
this happens again for combinations of period and damping
time indicative of very strong damping. In summary, model
comparison under the TTTB approximations enables us to
draw conclusions about di↵erent levels of evidence among the
considered models, but this evidence is only appreciable for
strongly damped oscillations. If that were the case, the linear
and parabolic profiles are preferred in front of the sinusoidal
profile. Among them, the plausibility of the linear density
model is larger than that corresponding to the parabolic den-
sity model.

Turning now to the case in which numerical solutions for
the forward model are used, outside the TTTB approxima-
tions, the results are strikingly di↵erent (see Figs. 8d-f). In ap-
pearance, Fig. 8a and d corresponding to the comparison be-
tween the sinusoidal and linear density models, are rather sim-
ilar. The di↵erence is that, in the second case, the regions with
significantly positive values of BF

S L are being plotted, i.e.,
those combinations of observed period and damping time for
which the evidence supports the sinusoidal model. The model
comparison result using the numerical solutions is therefore
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riod and damping time values. The calculation already takes
into account the uncertainty on the measured wave proper-
ties. We see that certain combinations of period and damping
time are more plausible than others. This means that when
performing the integral in Eq. (10), summing up all the possi-
ble parameter combinations that could produce the observed
data, those combinations have a larger marginal likelihood.
The calculation requires the use of that particular model, as-
sumed to be true, the selection of particular values for the
uncertainty on the data, and the integral of the product of the
likelihood function with the prior over the assumed ranges for
all parameters, hence all the available information is used in a
consistent way. A similar calculation was carried out for the
remaining linear and parabolic density models, M

L and M

P.
Once this is done, Bayes factor can be computed considering
ratios as given by Eq. (13) and the relative plausibility of one
model against another can be assessed.

Figure 8 shows the obtained results. Each panel displays
contours for the regions in period and damping time space
for which the evidence for one particular model against an-
other alternative reaches a given level of evidence. These lev-
els are based on the corresponding values of 2 log(BF

i j) and
the associated amount of evidence according the the Kass &
Raftery (1995) table. Regions in white indicate period and
damping time combinations for which minimal evidence is
obtained, hence the result of the model comparison is incon-
clusive. Then, di↵erent levels of grey shading point to re-
gions in which positive, strong, and very strong evidence is
obtained, with the level of evidence increasing with the dark-
ening. The top row panels correspond to results in which
the TTTB approximations to the forward solutions have been
used. The bottom row panels correspond to results in which
numerical forward solutions have been employed.

Considering first model comparison results under the TTTB
approximations, Fig. 8a shows the regions with di↵erent lev-
els of evidence for the comparison between the sinusoidal
and the linear profiles. Note that by construction, regions

in the observed parameter space where BF
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ji reach
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i j) = � log(BF

ji), and cannot overlap. In the com-
parison between the sinusoidal and linear profiles only BF
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reaches significantly positive values, with the evidence being
positive, strong, and very strong. This means that the evi-
dence supports the linear density model instead of the sinu-
soidal density model. However, the regions where this occurs
correspond to combinations with short damping time scale, in
comparison to the period (see Fig. 8a). A similar conclusion
can be reached in the comparison between the sinusoidal and
parabolic density models (see Fig. 8b) and the comparison
between the linear and parabolic density models (see Fig. 8c).
In the first case, we obtain positive and strong evidence for
the parabolic profile. In the second case, the evidence sup-
ports the linear density model instead of the parabolic profile,
with positive, strong, and very strong evidence. In both cases,
this happens again for combinations of period and damping
time indicative of very strong damping. In summary, model
comparison under the TTTB approximations enables us to
draw conclusions about di↵erent levels of evidence among the
considered models, but this evidence is only appreciable for
strongly damped oscillations. If that were the case, the linear
and parabolic profiles are preferred in front of the sinusoidal
profile. Among them, the plausibility of the linear density
model is larger than that corresponding to the parabolic den-
sity model.

Turning now to the case in which numerical solutions for
the forward model are used, outside the TTTB approxima-
tions, the results are strikingly di↵erent (see Figs. 8d-f). In ap-
pearance, Fig. 8a and d corresponding to the comparison be-
tween the sinusoidal and linear density models, are rather sim-
ilar. The di↵erence is that, in the second case, the regions with
significantly positive values of BF

S L are being plotted, i.e.,
those combinations of observed period and damping time for
which the evidence supports the sinusoidal model. The model
comparison result using the numerical solutions is therefore
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riod and damping time values. The calculation already takes
into account the uncertainty on the measured wave proper-
ties. We see that certain combinations of period and damping
time are more plausible than others. This means that when
performing the integral in Eq. (10), summing up all the possi-
ble parameter combinations that could produce the observed
data, those combinations have a larger marginal likelihood.
The calculation requires the use of that particular model, as-
sumed to be true, the selection of particular values for the
uncertainty on the data, and the integral of the product of the
likelihood function with the prior over the assumed ranges for
all parameters, hence all the available information is used in a
consistent way. A similar calculation was carried out for the
remaining linear and parabolic density models, M

L and M

P.
Once this is done, Bayes factor can be computed considering
ratios as given by Eq. (13) and the relative plausibility of one
model against another can be assessed.

Figure 8 shows the obtained results. Each panel displays
contours for the regions in period and damping time space
for which the evidence for one particular model against an-
other alternative reaches a given level of evidence. These lev-
els are based on the corresponding values of 2 log(BF

i j) and
the associated amount of evidence according the the Kass &
Raftery (1995) table. Regions in white indicate period and
damping time combinations for which minimal evidence is
obtained, hence the result of the model comparison is incon-
clusive. Then, di↵erent levels of grey shading point to re-
gions in which positive, strong, and very strong evidence is
obtained, with the level of evidence increasing with the dark-
ening. The top row panels correspond to results in which
the TTTB approximations to the forward solutions have been
used. The bottom row panels correspond to results in which
numerical forward solutions have been employed.

Considering first model comparison results under the TTTB
approximations, Fig. 8a shows the regions with di↵erent lev-
els of evidence for the comparison between the sinusoidal
and the linear profiles. Note that by construction, regions

in the observed parameter space where BF

i j and BF

ji reach
the di↵erent levels of evidence are mutually exclusive, since
log(BF

i j) = � log(BF

ji), and cannot overlap. In the com-
parison between the sinusoidal and linear profiles only BF

LP

reaches significantly positive values, with the evidence being
positive, strong, and very strong. This means that the evi-
dence supports the linear density model instead of the sinu-
soidal density model. However, the regions where this occurs
correspond to combinations with short damping time scale, in
comparison to the period (see Fig. 8a). A similar conclusion
can be reached in the comparison between the sinusoidal and
parabolic density models (see Fig. 8b) and the comparison
between the linear and parabolic density models (see Fig. 8c).
In the first case, we obtain positive and strong evidence for
the parabolic profile. In the second case, the evidence sup-
ports the linear density model instead of the parabolic profile,
with positive, strong, and very strong evidence. In both cases,
this happens again for combinations of period and damping
time indicative of very strong damping. In summary, model
comparison under the TTTB approximations enables us to
draw conclusions about di↵erent levels of evidence among the
considered models, but this evidence is only appreciable for
strongly damped oscillations. If that were the case, the linear
and parabolic profiles are preferred in front of the sinusoidal
profile. Among them, the plausibility of the linear density
model is larger than that corresponding to the parabolic den-
sity model.

Turning now to the case in which numerical solutions for
the forward model are used, outside the TTTB approxima-
tions, the results are strikingly di↵erent (see Figs. 8d-f). In ap-
pearance, Fig. 8a and d corresponding to the comparison be-
tween the sinusoidal and linear density models, are rather sim-
ilar. The di↵erence is that, in the second case, the regions with
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those combinations of observed period and damping time for
which the evidence supports the sinusoidal model. The model
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Weight posteriors from alternative models with the relative evidence for each one

Model averagingLEVEL 3

Model-averaged posterior for parameter      is

p(✓|d) =
NX

i=1

p(✓|d,Mi)p(Mi|d) = p(M1|d)
NX

i=1

Bi1p(✓|d,Mi)

Take e.g., model M1 as reference model and compute Bayes factors with respect to it 

Further assume that prior probabilities for the N models are all equal p(Mi)=1/N

With these assumptions, the posterior for the reference model M1 is given by

p(M1|d) =
1

1 +
PN

i=2 Bi1

✓



Model averaging result - case 1
Solid:  sinusoidal - Dashed: linear - Dotted: parabolic - symbols: averaged posterior



Model averaging result - case 2
Solid:  sinusoidal - Dashed: linear - Dotted: parabolic - symbols: averaged posterior



Conclusions
Bayesian analysis tools enable us to apply the three levels of Bayesian inference to 
the problem of obtaining information on the physical parameters in oscillating 
coronal waveguides, to assess the plausibility of alternative models, and to obtain 
model averaged posteriors when the evidence does not strongly support any model.

Parameter inference successful in determining Alfven travel times, density contrasts, 
and transverse inhomogeneity length-scales. Model comparison successful in assessing 
alternative density models.                                                            

Method incorporates consistently calculated credible intervals and uncertainty. 
Enables to quantify plausibility of alternative models in view of data

The methods here developed can help to solve more involved problems such as the 
ones considered by our Team.

MCMC sampling of the full posterior can be substituted by integration for the 
marginal posteriors in low-dimensional problems.
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