Improving the Analysis of Solar and Stellar Observations: Overview

ISSI Meeting · May 11-13, 2015 · Bern, Switzerland

Open Problems in Solar Physics

Heating of the solar corona and chromosphere

Origin and acceleration of the solar wind

The Problem in a Nutshell

Problem 1: Properties of the atomic systems producing emission in the solar atmosphere are uncertain, but the systems are constrained Problem 2: Properties of the instrumentation are

Problem 2: Properties of the instrumentation are uncertain and can change with time

1s2p ¹P

J = 2

3.189Å

1.8552Å

1s2p ³P.

21.804 Å

3.192 Å

1.8595Å

1s2s ³S

22.098Å (O VIT)

3.211 Å (CaXIX) 1.8680Å (FeXXV)

1s² ¹S₀

What inferences can we make about the properties of solar and stellar atmospheres in the presence of these uncertainties?

Example Solar Data

21-APR-2012 ~17 UT

EIS, XRT, AIA

ATA 171 Å 21 Apr 12 16

Solar Dynamics Observatory

photosphere magnetic field chromosphere

transition region

Solar Dynamics Observatory

"1 MK" Corona

"1 MK" Corona magnetic field

XRT/Hinode Temperature Responses

21-Apr-12 16:55:33 Be_thin/Open

Computing Line Intensities

$$I_{\lambda} = n_u A_{ul} V$$

$$I_{\lambda} = \frac{n_u}{n_{ion}} \frac{n_{ion}}{n_{el}} \frac{n_{el}}{n_H} \frac{n_H}{n_e} n_e A_{ul} V$$

$$I_{\lambda} = \epsilon_{\lambda}(T_e) n_e^2 V$$

$$I_{\lambda} = \int_{T_e} \epsilon_{\lambda}(T_e) n_e^2 \frac{dV}{dT_e} dT_e$$

$$I_{\lambda} = \int_{T_e} \epsilon_{\lambda}(T_e)\xi(T_e)dT_e$$

inversion is noisy \Rightarrow regularize or smooth

Example DEM Calculation

A Simpler Argument

For cooling loops Ca XVII should be brighter than Ca XIV

Ca XIV 193.874

Ca XV 200.972

Ca XVI 208.604

Ca XVII 192.858

Reality: Ca XIV is usually brighter than Ca XVII amount of 5 MK plasma is the corona is small

Example DEM Calculation

Example Line Ratio

Some atomic levels are metastable and sensitive to collisional de-excitation. Taking the ratio of an emission line from such a level to another emission line from the same ionization stage isolates the density dependance. The ratio of 203.826/203.044 is an example of such a ratio. By comparing the observed line ratio with a theoretical calculation the density at the loop footpoint can be inferred.

Example Perturbed CHIANTI Atomic Data

Numerical Simulation

Simulations can be used to test inference methods

Meeting Goals

Top Level Goal

- Estimates of uncertainties
 - atomic data
 - instrumental calibration
- Algorithm for computing the limits to inference

Meta Goal

• Modernizing statistical inference in solar physics

"The problem with the astrophysical literature is that most of it is wrong." - Steven Weinberg

