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Computer Model for Stellar Evolution
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We observe a star’s photometric magnitudes—the apparent
brightness of a star in several wide wavelength bands.

Magnitudes observed with Gaussian measurement error.

Computer models to predict the photometric magnitudes of a star
given a set of input parameters that describe certain characteristics
about the star.
Embed these models in a multilevel model for statistical inference.
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Combining Computer Models and Statistical Models
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Observe photometric magnitudes through n different filters per star.
Model photometric magnitudes as n independent Gaussians.

Means involve the computer models for stellar evolution; depend on

the stellar evolution parameters.

Known Gaussian measurement errors in the covariance matrix.

Data is contaminated by non-cluster field stars.

Use a finite mixture model, with field star magnitudes assumed

uniform over the range of the data.
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Final Combined Computer/Statistical Model
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We take a Bayesian approach to model fitting.

Informative prior distributions are constructed based on
previous studies and astrophysical theory.
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Bayesian Statistical Analyses

Specifying a Bayesian statistical model:

Likelihood Function: the distribution of the data, Y, given
model parameters, ⇥. Denoted by L(⇥) = P (Y |⇥).

⇥ may contain computer model inputs.

Prior Distribution: represents knowledge about the parameters
obtained prior to the current data. Denoted by P (⇥).

Posterior Distribution: represents knowledge about the
parameters in light of the data. Denoted by P (⇥ | Y ) .

From Bayes’ Theorem:

P (⇥ | Y ) µ P (Y |⇥)P (⇥)
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Complex Posterior Distributions
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Exploring P (⇥ | Y )

We explore the posterior distribution, P (⇥ | Y ), using Markov
chain Monte Carlo (MCMC) methods.
MCMC produces (correlated) samples from P (⇥ | Y ).
Fitted values, 95% CIs, etc. computed using MCMC draws.

Stenning, David Fitting Computer Models



The Metropolis Algorithm

Draw ⇥(0) from some starting distribution.

For t = 1,2, . . .

Draw “proposed state” ⇥(⇤) =⇥(t�1)+ random perturbation.

random perturbation must be symmetric
e.g. ⇥(⇤) ⇠ N
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Set ⇥(t) =⇥(⇤) with probability a, else set ⇥(t) =⇥(t�1).

Note that proposed states “uphill” are always accepted, while
proposed states “downhill” are only sometimes accepted.
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The Metropolis Algorithm: Step-Size Effect
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Adaptive Metropolis Algorithm

How to choose an “optimal” proposal distribution?

For a N (0,⌃) target distribution, the optimal proposal
distribution is N

⇣
0,
h
(2.38)2 /d

i
⌃
⌘
, where ⌃ is a

d�dimensional covariance matrix (Gelman et al. 1996).

Adaptive Metropolis (AM) algorithm (e.g., Haario et al. 2001):

At iteration t, draw ⇥(⇤) ⇠ N
⇣
⇥(t�1),

h
(2.38)2 /d

i
xt�1

⌘
.

xt�1 is the empirical covariance matrix of ⇥(0), . . . ,⇥(t�1).

Key condition: the amount of adaptation at iteration t goes to 0 as
t ! • (Diminishing Adaptation Condition).
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Adaptive Metropolis Advantage

Exploring a (marginal)
posterior distribution using
an AM algorithm.
Improved efficiency and
convergence compared to
non-adaptive Metropolis
implementation.

Same data and setup used
for both algorithms.
AM algorithm adapts the
proposal distribution
starting at iteration 1000.
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CMD Matrix with Fitted Computer Models
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